Skip to content
Snippets Groups Projects
class1_presentation_predictor.py 12.7 KiB
Newer Older
from __future__ import print_function

Tim O'Donnell's avatar
Tim O'Donnell committed
from os.path import join, exists, abspath
from os import mkdir, environ
from socket import gethostname
from getpass import getuser

Tim O'Donnell's avatar
Tim O'Donnell committed
import time
import collections
Tim O'Donnell's avatar
Tim O'Donnell committed
import json
import hashlib
import logging
Tim O'Donnell's avatar
Tim O'Donnell committed
from six import string_types
Tim O'Donnell's avatar
Tim O'Donnell committed

import numpy
Tim O'Donnell's avatar
Tim O'Donnell committed
import pandas
import sklearn
import sklearn.linear_model
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
import mhcnames
try:
    import tqdm
except ImportError:
    tdqm = None

Tim O'Donnell's avatar
Tim O'Donnell committed
from .version import __version__
from .class1_affinity_predictor import Class1AffinityPredictor
from .class1_cleavage_predictor import Class1CleavagePredictor
from .class1_neural_network import DEFAULT_PREDICT_BATCH_SIZE
Tim O'Donnell's avatar
Tim O'Donnell committed
from .encodable_sequences import EncodableSequences
Tim O'Donnell's avatar
Tim O'Donnell committed
from .regression_target import from_ic50, to_ic50
from .multiple_allele_encoding import MultipleAlleleEncoding
from .downloads import get_default_class1_presentation_models_dir
from .common import load_weights


MAX_ALLELES_PER_SAMPLE = 6
PREDICT_BATCH_SIZE = DEFAULT_PREDICT_BATCH_SIZE
Tim O'Donnell's avatar
Tim O'Donnell committed
class Class1PresentationPredictor(object):
    model_inputs = ["affinity_score", "cleavage_prediction"]

Tim O'Donnell's avatar
Tim O'Donnell committed
    def __init__(
            self,
            affinity_predictor=None,
            cleavage_predictor_with_flanks=None,
            cleavage_predictor_without_flanks=None,
            weights_dataframe=None,
Tim O'Donnell's avatar
Tim O'Donnell committed
            metadata_dataframes=None):

        self.affinity_predictor = affinity_predictor
        self.cleavage_predictor_with_flanks = cleavage_predictor_with_flanks
        self.cleavage_predictor_without_flanks = cleavage_predictor_without_flanks
        self.weights_dataframe = weights_dataframe
Tim O'Donnell's avatar
Tim O'Donnell committed
        self.metadata_dataframes = (
            dict(metadata_dataframes) if metadata_dataframes else {})
        self._models_cache = {}

    def get_affinity_predictions(
            self, peptides, experiment_names, alleles, verbose=1):

        df = pandas.DataFrame({
            "peptide": numpy.array(peptides, copy=False),
            "experiment_name": numpy.array(experiment_names, copy=False),
        })

        iterator = df.groupby("experiment_name")
        if verbose > 0:
            print("Predicting affinities.")
            if tqdm is not None:
                iterator = tqdm.tqdm(
                    iterator, total=df.experiment_name.nunique())

        for (experiment, sub_df) in iterator:
            predictions_df = pandas.DataFrame(index=sub_df.index)
            experiment_peptides = EncodableSequences.create(sub_df.peptide.values)
            for allele in alleles[experiment]:
                predictions_df[allele] = self.affinity_predictor.predict(
                    peptides=experiment_peptides,
                    allele=allele,
                    model_kwargs={'batch_size': PREDICT_BATCH_SIZE})
            df.loc[
                sub_df.index, "tightest_affinity"
            ] = predictions_df.min(1).values
            df.loc[
                sub_df.index, "tightest_affinity_allele"
            ] = predictions_df.idxmin(1).values

        return df

    def get_cleavage_predictions(
            self, peptides, n_flanks=None, c_flanks=None, verbose=1):

        if verbose > 0:
            print("Predicting cleavage.")

        if (n_flanks is None) != (c_flanks is None):
            raise ValueError("Specify both or neither of n_flanks, c_flanks")

        if n_flanks is None:
            if self.cleavage_predictor_without_flanks is None:
                raise ValueError("No cleavage predictor without flanks")
            predictor = self.cleavage_predictor_without_flanks
            n_flanks = [""] * len(peptides)
            c_flanks = n_flanks
        else:
            if self.cleavage_predictor_with_flanks is None:
                raise ValueError("No cleavage predictor with flanks")
            predictor = self.cleavage_predictor_with_flanks

        result = predictor.predict(
            peptides=peptides,
            n_flanks=n_flanks,
            c_flanks=c_flanks,
            batch_size=PREDICT_BATCH_SIZE)
Tim O'Donnell's avatar
Tim O'Donnell committed

        return result
Tim O'Donnell's avatar
Tim O'Donnell committed

    def fit(
            self,
            targets,
            peptides,
            experiment_names,
            alleles,
            n_flanks=None,
            c_flanks=None,
            verbose=1):
Tim O'Donnell's avatar
Tim O'Donnell committed

        df = self.get_affinity_predictions(
            peptides=peptides,
            experiment_names=experiment_names,
            alleles=alleles,
            verbose=verbose)
        df["affinity_score"] = from_ic50(df.tightest_affinity)
        df["target"] = numpy.array(targets, copy=False)

        if (n_flanks is None) != (c_flanks is None):
            raise ValueError("Specify both or neither of n_flanks, c_flanks")

        with_flanks_list = []
        if self.cleavage_predictor_without_flanks is not None:
            with_flanks_list.append(False)

        if n_flanks is not None and self.cleavage_predictor_with_flanks is not None:
            with_flanks_list.append(True)

        if not with_flanks_list:
            raise RuntimeError("Can't fit any models")

        if self.weights_dataframe is None:
            self.weights_dataframe = pandas.DataFrame()

        for with_flanks in with_flanks_list:
            model_name = 'with_flanks' if with_flanks else "without_flanks"
            if verbose > 0:
                print("Training variant", model_name)

            df["cleavage_prediction"] = self.get_cleavage_predictions(
                peptides=df.peptide.values,
                n_flanks=n_flanks if with_flanks else None,
                c_flanks=c_flanks if with_flanks else None,
                verbose=verbose)

            model = self.get_model()
            if verbose > 0:
                print("Fitting LR model.")
                print(df)

            model.fit(
                X=df[self.model_inputs].values,
                y=df.target.astype(float))

            self.weights_dataframe.loc[model_name, "intercept"] = model.intercept_
            for (name, value) in zip(self.model_inputs, numpy.squeeze(model.coef_)):
                self.weights_dataframe.loc[model_name, name] = value
            self._models_cache[model_name] = model

    def get_model(self, name=None):
        if name is None or name not in self._models_cache:
            model = sklearn.linear_model.LogisticRegression(solver="lbfgs")
            if name is not None:
                row = self.weights_dataframe.loc[name]
                model.intercept_ = row.intercept
                model.coef_ = numpy.expand_dims(
                    row[self.model_inputs].values, axis=0)
        else:
            model = self._models_cache[name]
        return model

    def predict_sequences(self, alleles, sequences):
        raise NotImplementedError
Tim O'Donnell's avatar
Tim O'Donnell committed

    def predict(
            self,
            peptides,
            alleles,
            experiment_names=None,
            n_flanks=None,
            c_flanks=None,
            verbose=1):
Tim O'Donnell's avatar
Tim O'Donnell committed
        return self.predict_to_dataframe(
            peptides=peptides,
            alleles=alleles,
            experiment_names=experiment_names,
            n_flanks=n_flanks,
            c_flanks=c_flanks,
            verbose=verbose).score.values
Tim O'Donnell's avatar
Tim O'Donnell committed

    def predict_to_dataframe(
Tim O'Donnell's avatar
Tim O'Donnell committed
            self,
            peptides,
Tim O'Donnell's avatar
Tim O'Donnell committed
            alleles,
            experiment_names=None,
            n_flanks=None,
            c_flanks=None,
            verbose=1):
Tim O'Donnell's avatar
Tim O'Donnell committed

        if isinstance(peptides, string_types):
            raise TypeError("peptides must be a list not a string")
Tim O'Donnell's avatar
Tim O'Donnell committed
        if isinstance(alleles, string_types):
            raise TypeError("alleles must be a list or dict")
Tim O'Donnell's avatar
Tim O'Donnell committed

        if isinstance(alleles, dict):
            if experiment_names is None:
                raise ValueError(
                    "experiment_names must be supplied when alleles is a dict")
        else:
            if experiment_names is not None:
                raise ValueError(
                    "alleles must be a dict when experiment_names is specified")
            alleles = numpy.array(alleles, copy=False)
            if len(alleles) > MAX_ALLELES_PER_SAMPLE:
Tim O'Donnell's avatar
Tim O'Donnell committed
                raise ValueError(
                    "When alleles is a list, it must have at most %d elements. "
                    "These alleles are taken to be a genotype for an "
                    "individual, and the strongest prediction across alleles "
                    "will be taken for each peptide. Note that this differs "
                    "from Class1AffinityPredictor.predict(), where alleles "
                    "is expected to be the same length as peptides."
                    % MAX_ALLELES_PER_SAMPLE)
Tim O'Donnell's avatar
Tim O'Donnell committed

            experiment_names = ["experiment1"] * len(peptides)
            alleles = {
                "experiment1": alleles,
            }
Tim O'Donnell's avatar
Tim O'Donnell committed

        df = self.get_affinity_predictions(
            peptides=peptides,
            experiment_names=experiment_names,
            alleles=alleles,
            verbose=verbose)
        df["affinity_score"] = from_ic50(df.tightest_affinity)

        if (n_flanks is None) != (c_flanks is None):
            raise ValueError("Specify both or neither of n_flanks, c_flanks")
Tim O'Donnell's avatar
Tim O'Donnell committed

        df["cleavage_prediction"] = self.get_cleavage_predictions(
            peptides=df.peptide.values,
            n_flanks=n_flanks,
            c_flanks=c_flanks,
            verbose=verbose)

        model_name = 'with_flanks' if n_flanks is not None else "without_flanks"
        model = self.get_model(model_name)
        df["score"] = model.predict_proba(df[self.model_inputs].values)[:,1]
        return df

    def save(self, models_dir):
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        Serialize the predictor to a directory on disk. If the directory does
        not exist it will be created.

        Parameters
        ----------
        models_dir : string
            Path to directory. It will be created if it doesn't exist.
        """

        if self.weights_dataframe is None:
            raise RuntimeError("Can't save before fitting")
Tim O'Donnell's avatar
Tim O'Donnell committed

        if not exists(models_dir):
            mkdir(models_dir)

        # Save underlying predictors
        self.affinity_predictor.save(join(models_dir, "affinity_predictor"))
        if self.cleavage_predictor_with_flanks is not None:
            self.cleavage_predictor_with_flanks.save(
                join(models_dir, "cleavage_predictor_with_flanks"))
        if self.cleavage_predictor_without_flanks is not None:
            self.cleavage_predictor_without_flanks.save(
                join(models_dir, "cleavage_predictor_without_flanks"))

        # Save model coefficients.
        self.weights_dataframe.to_csv(join(models_dir, "weights.csv"))

        # Write "info.txt"
        info_path = join(models_dir, "info.txt")
        rows = [
            ("trained on", time.asctime()),
            ("package   ", "mhcflurry %s" % __version__),
            ("hostname  ", gethostname()),
            ("user      ", getuser()),
        ]
        pandas.DataFrame(rows).to_csv(
            info_path, sep="\t", header=False, index=False)

        if self.metadata_dataframes:
            for (name, df) in self.metadata_dataframes.items():
                metadata_df_path = join(models_dir, "%s.csv.bz2" % name)
                df.to_csv(metadata_df_path, index=False, compression="bz2")

Tim O'Donnell's avatar
Tim O'Donnell committed

    @classmethod
    def load(cls, models_dir=None, max_models=None):
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        Deserialize a predictor from a directory on disk.

        Parameters
        ----------
        models_dir : string
            Path to directory. If unspecified the default downloaded models are
            used.

        max_models : int, optional
            Maximum number of affinity and cleavage (counted separately)
            models to load
Tim O'Donnell's avatar
Tim O'Donnell committed

        Returns
        -------
        `Class1PresentationPredictor` instance
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        if models_dir is None:
            models_dir = get_default_class1_presentation_models_dir()
Tim O'Donnell's avatar
Tim O'Donnell committed

        affinity_predictor = Class1AffinityPredictor.load(
            join(models_dir, "affinity_predictor"), max_models=max_models)
Tim O'Donnell's avatar
Tim O'Donnell committed

        cleavage_predictor_with_flanks = None
        if exists(join(models_dir, "cleavage_predictor_with_flanks")):
            cleavage_predictor_with_flanks = Class1CleavagePredictor.load(
                join(models_dir, "cleavage_predictor_with_flanks"),
                max_models=max_models)
Tim O'Donnell's avatar
Tim O'Donnell committed

        cleavage_predictor_without_flanks = None
        if exists(join(models_dir, "cleavage_predictor_without_flanks")):
            cleavage_predictor_without_flanks = Class1CleavagePredictor.load(
                join(models_dir, "cleavage_predictor_without_flanks"),
                max_models=max_models)
Tim O'Donnell's avatar
Tim O'Donnell committed

        weights_dataframe = pandas.read_csv(
            join(models_dir, "weights.csv"),
            index_col=0)
Tim O'Donnell's avatar
Tim O'Donnell committed

        result = cls(
            affinity_predictor=affinity_predictor,
            cleavage_predictor_with_flanks=cleavage_predictor_with_flanks,
            cleavage_predictor_without_flanks=cleavage_predictor_without_flanks,
            weights_dataframe=weights_dataframe)
Tim O'Donnell's avatar
Tim O'Donnell committed
        return result