Newer
Older
from .hyperparameters import HyperparameterDefaults
from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
class Class1LigandomePredictor(object):
network_hyperparameter_defaults = HyperparameterDefaults(
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
allele_amino_acid_encoding="BLOSUM62",
peptide_encoding={
'vector_encoding_name': 'BLOSUM62',
'alignment_method': 'left_pad_centered_right_pad',
'max_length': 15,
},
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
validation_split=0.1,
early_stopping=True,
minibatch_size=128,
random_negative_rate=0.0,
random_negative_constant=0,
)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
patience=20,
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
loss="custom:mse_with_inequalities",
optimizer="rmsprop",
learning_rate=None,
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
compile_hyperparameter_defaults)
def __init__(
self,
class1_affinity_predictor,
max_ensemble_size=None,
**hyperparameters):
if not class1_affinity_predictor.class1_pan_allele_models:
raise NotImplementedError("Pan allele models required")
if class1_affinity_predictor.allele_to_allele_specific_models:
raise NotImplementedError("Only pan allele models are supported")
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
models = class1_affinity_predictor.class1_pan_allele_models
if max_ensemble_size is not None:
models = models[:max_ensemble_size]
self.network = self.make_network(
models,
self.hyperparameters)
self.fit_info = []
@staticmethod
def make_network(pan_allele_class1_neural_networks, hyperparameters):
from keras.layers import Input, TimeDistributed, Lambda, Flatten, RepeatVector, concatenate, Dropout, Reshape, Embedding
from keras.activations import sigmoid
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
networks = [model.network() for model in pan_allele_class1_neural_networks]
merged_ensemble = Class1NeuralNetwork.merge(
networks,
merge_method="average")
peptide_shape = tuple(
int(x) for x in K.int_shape(merged_ensemble.inputs[0])[1:])
input_alleles = Input(shape=(6,), name="allele") # up to 6 alleles
input_peptides = Input(
shape=peptide_shape,
dtype='float32',
name='peptide')
#peptides_broadcasted = Lambda(
# lambda x:
# K.reshape(
# K.repeat(
# K.reshape(x, (-1, numpy.product(peptide_shape))), 6),
# (-1, 6) + peptide_shape)
#)(input_peptides)
peptides_flattened = Flatten()(input_peptides)
peptides_repeated = RepeatVector(6)(peptides_flattened)
allele_representation = Embedding(
name="allele_representation",
input_dim=64, # arbitrary, how many alleles to have room for
output_dim=1029,
input_length=6,
trainable=False)(input_alleles)
allele_flat = Reshape((6, -1))(allele_representation)
allele_peptide_merged = concatenate([peptides_repeated, allele_flat])
dense_0 = merged_ensemble.get_layer("dense_0")
td_dense0 = TimeDistributed(dense_0, name="td_dense_0")(allele_peptide_merged)
td_dense0 = Dropout(0.5)(td_dense0)
dense_1 = merged_ensemble.get_layer("dense_1")
td_dense1 = TimeDistributed(dense_1, name="td_dense_1")(td_dense0)
td_dense1 = Dropout(0.5)(td_dense1)
output = merged_ensemble.get_layer("output")
td_output = TimeDistributed(output)(td_dense1)
network = Model(
inputs=[input_peptides, input_alleles],
outputs=td_output,
name="ligandome",
)
#print('trainable', network.get_layer("td_dense_0").trainable)
#print('trainable', network.get_layer("td_dense_0").trainable)
return network
@staticmethod
def loss(y_true, y_pred, delta=0.2):
"""
Loss function for ligandome prediction.
"""
import tensorflow as tf
y_pred = tf.squeeze(y_pred, axis=-1)
y_true = tf.reshape(tf.cast(y_true, tf.bool), (-1,))
pos = tf.boolean_mask(y_pred, y_true)
neg = tf.boolean_mask(y_pred, tf.logical_not(y_true))
result = tf.reduce_sum(
tf.maximum(0.0, tf.reshape(neg, (-1, 1)) - pos_max + delta) ** 2)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def peptides_to_network_input(self, peptides):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
encoder = EncodableSequences.create(peptides)
encoded = encoder.variable_length_to_fixed_length_vector_encoding(
**self.hyperparameters['peptide_encoding'])
assert len(encoded) == len(peptides)
return encoded
def allele_encoding_to_network_input(self, allele_encoding):
"""
Encode alleles to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
allele_encoding : AlleleEncoding
Returns
-------
(numpy.array, numpy.array)
Indices and allele representations.
"""
return (
allele_encoding.indices,
allele_encoding.allele_representations(
self.hyperparameters['allele_amino_acid_encoding']))
def fit(
self,
peptides,
labels,
allele_encoding,
shuffle_permutation=None,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
import keras.backend as K
#for layer in self.network._layers[:8]:
# print("Setting non trainable", layer)
# layer.trainable = False
# import ipdb ; ipdb.set_trace()
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
peptides = EncodableSequences.create(peptides)
peptide_encoding = self.peptides_to_network_input(peptides)
# Optional optimization
allele_encoding = allele_encoding.compact()
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding))
# Shuffle
if shuffle_permutation is None:
shuffle_permutation = numpy.random.permutation(len(labels))
peptide_encoding = peptide_encoding[shuffle_permutation]
allele_encoding_input = allele_encoding_input[shuffle_permutation]
labels = labels[shuffle_permutation]
x_dict = {
'peptide': peptide_encoding,
'allele': allele_encoding_input,
}
fit_info = collections.defaultdict(list)
self.set_allele_representations(allele_representations)
self.network.compile(
loss=self.loss,
optimizer=self.hyperparameters['optimizer'])
if self.hyperparameters['learning_rate'] is not None:
K.set_value(
self.network.optimizer.lr,
self.hyperparameters['learning_rate'])
fit_info["learning_rate"] = float(
K.get_value(self.network.optimizer.lr))
if verbose:
self.network.summary()
min_val_loss_iteration = None
min_val_loss = None
last_progress_print = 0
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
epoch_start = time.time()
# TODO: need to use fit_generator to keep each minibatch corresponding
# to a single experiment
fit_history = self.network.fit(
x_dict,
labels,
shuffle=True,
batch_size=self.hyperparameters['minibatch_size'],
verbose=verbose,
epochs=i + 1,
initial_epoch=i,
validation_split=self.hyperparameters['validation_split'],
)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if self.hyperparameters['validation_split']:
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss -
self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
fit_info["num_points"] = len(peptides)
self.fit_info.append(dict(fit_info))
def predict(
self,
peptides,
allele_encoding,
batch_size=DEFAULT_PREDICT_BATCH_SIZE):
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding.compact()))
self.set_allele_representations(allele_representations)
x_dict = {
'peptide': self.peptides_to_network_input(peptides),
'allele': allele_encoding_input,
}
predictions = self.network.predict(x_dict, batch_size=batch_size)
return numpy.squeeze(predictions, axis=-1)
#def predict(self):
def set_allele_representations(self, allele_representations):
"""
"""
from keras.models import clone_model
import keras.backend as K
import tensorflow as tf
reshaped = allele_representations.reshape(
(allele_representations.shape[0], -1))
original_model = self.network
layer = original_model.get_layer("allele_representation")
existing_weights_shape = (layer.input_dim, layer.output_dim)
# Only changes to the number of supported alleles (not the length of
# the allele sequences) are allowed.
assert existing_weights_shape[1:] == reshaped.shape[1:]
if existing_weights_shape[0] > reshaped.shape[0]:
# Extend with NaNs so we can avoid having to reshape the weights
# matrix, which is expensive.
reshaped = numpy.append(
reshaped,
numpy.ones([
existing_weights_shape[0] - reshaped.shape[0],
reshaped.shape[1]
]) * numpy.nan,
axis=0)
if existing_weights_shape != reshaped.shape:
print("Performing network surgery", existing_weights_shape, reshaped.shape)
# Network surgery required. Make a new network with this layer's
# dimensions changed. Kind of a hack.
layer.input_dim = reshaped.shape[0]
new_model = clone_model(original_model)
# copy weights for other layers over
for layer in new_model.layers:
if layer.name != "allele_representation":
layer.set_weights(
original_model.get_layer(name=layer.name).get_weights())
self.network = new_model
layer = new_model.get_layer("allele_representation")
# Disable the old model to catch bugs.
def throw(*args, **kwargs):
raise RuntimeError("Using a disabled model!")
original_model.predict = \
original_model.fit = \
original_model.fit_generator = throw
layer.set_weights([reshaped])