Skip to content
Snippets Groups Projects
class1_presentation_predictor.py 11.9 KiB
Newer Older
from __future__ import print_function

Tim O'Donnell's avatar
Tim O'Donnell committed
from os.path import join, exists, abspath
from os import mkdir, environ
from socket import gethostname
from getpass import getuser

Tim O'Donnell's avatar
Tim O'Donnell committed
import time
import collections
Tim O'Donnell's avatar
Tim O'Donnell committed
import json
import hashlib
import logging
Tim O'Donnell's avatar
Tim O'Donnell committed
from six import string_types
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
import numpy
Tim O'Donnell's avatar
Tim O'Donnell committed
import pandas
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
import mhcnames
Tim O'Donnell's avatar
Tim O'Donnell committed
from .version import __version__
Tim O'Donnell's avatar
Tim O'Donnell committed
from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
Tim O'Donnell's avatar
Tim O'Donnell committed
from .regression_target import from_ic50, to_ic50
Tim O'Donnell's avatar
Tim O'Donnell committed
from .allele_encoding import MultipleAlleleEncoding
from .downloads import get_default_class1_presentation_models_dir
from .class1_presentation_neural_network import Class1PresentationNeuralNetwork
from .common import save_weights, load_weights, NumpyJSONEncoder

Tim O'Donnell's avatar
Tim O'Donnell committed
class Class1PresentationPredictor(object):
Tim O'Donnell's avatar
Tim O'Donnell committed
    def __init__(
            self,
Tim O'Donnell's avatar
Tim O'Donnell committed
            allele_to_sequence,
            manifest_df=None,
            metadata_dataframes=None):
        self.models = models
Tim O'Donnell's avatar
Tim O'Donnell committed
        self.allele_to_sequence = allele_to_sequence
Tim O'Donnell's avatar
Tim O'Donnell committed
        self._manifest_df = manifest_df
        self.metadata_dataframes = (
            dict(metadata_dataframes) if metadata_dataframes else {})

    @property
    def manifest_df(self):
        """
        A pandas.DataFrame describing the models included in this predictor.

        Returns
        -------
        pandas.DataFrame
        """
        if self._manifest_df is None:
            rows = []
            for (i, model) in enumerate(self.models):
Tim O'Donnell's avatar
Tim O'Donnell committed
                model_config = model.get_config()
Tim O'Donnell's avatar
Tim O'Donnell committed
                rows.append((
                    self.model_name(i),
                    json.dumps(model_config, cls=NumpyJSONEncoder),
Tim O'Donnell's avatar
Tim O'Donnell committed
                    model
                ))
            self._manifest_df = pandas.DataFrame(
                rows,
                columns=["model_name", "config_json", "model"])
        return self._manifest_df
Tim O'Donnell's avatar
Tim O'Donnell committed

    @property
    def max_alleles(self):
        max_alleles = self.models[0].hyperparameters['max_alleles']
Tim O'Donnell's avatar
Tim O'Donnell committed
        assert all(
Tim O'Donnell's avatar
Tim O'Donnell committed
            n.hyperparameters['max_alleles'] == max_alleles
            for n in self.models)
Tim O'Donnell's avatar
Tim O'Donnell committed
        return max_alleles

Tim O'Donnell's avatar
Tim O'Donnell committed
    @staticmethod
    def model_name(num):
        """
        Generate a model name

        Returns
        -------
        string

        """
        random_string = hashlib.sha1(
            str(time.time()).encode()).hexdigest()[:16]
        return "LIGANDOME-CLASSI-%d-%s" % (
            num,
            random_string)

    @staticmethod
    def weights_path(models_dir, model_name):
        """
        Generate the path to the weights file for a model

        Parameters
        ----------
        models_dir : string
        model_name : string

        Returns
        -------
        string
        """
        return join(models_dir, "weights_%s.npz" % model_name)

Tim O'Donnell's avatar
Tim O'Donnell committed
    def predict(self, peptides, alleles, batch_size=DEFAULT_PREDICT_BATCH_SIZE):
        return self.predict_to_dataframe(
            peptides=peptides,
            alleles=alleles,
            batch_size=batch_size).score.values

    def predict_to_dataframe(
Tim O'Donnell's avatar
Tim O'Donnell committed
            self,
            peptides,
Tim O'Donnell's avatar
Tim O'Donnell committed
            alleles,
            include_details=False,
Tim O'Donnell's avatar
Tim O'Donnell committed
            batch_size=DEFAULT_PREDICT_BATCH_SIZE):
Tim O'Donnell's avatar
Tim O'Donnell committed

        if isinstance(peptides, string_types):
            raise TypeError("peptides must be a list or array, not a string")
        if isinstance(alleles, string_types):
            raise TypeError(
Tim O'Donnell's avatar
Tim O'Donnell committed
                "alleles must be an iterable or MultipleAlleleEncoding")
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
        peptides = EncodableSequences.create(peptides)
Tim O'Donnell's avatar
Tim O'Donnell committed

        if not isinstance(alleles, MultipleAlleleEncoding):
Tim O'Donnell's avatar
Tim O'Donnell committed
            if len(alleles) > self.max_alleles:
                raise ValueError(
                    "When alleles is a list, it must have at most %d elements. "
                    "These alleles are taken to be a genotype for an "
                    "individual, and the strongest prediction across alleles "
                    "will be taken for each peptide. Note that this differs "
                    "from Class1AffinityPredictor.predict(), where alleles "
                    "is expected to be the same length as peptides."
                    % (
                        self.max_alleles))
            alleles = MultipleAlleleEncoding(
                experiment_names=numpy.tile("experiment", len(peptides)),
                experiment_to_allele_list={
Tim O'Donnell's avatar
Tim O'Donnell committed
                    "experiment": [
                        mhcnames.normalize_allele_name(a) for a in alleles
                    ],
Tim O'Donnell's avatar
Tim O'Donnell committed
                },
Tim O'Donnell's avatar
Tim O'Donnell committed
                allele_to_sequence=self.allele_to_sequence,
Tim O'Donnell's avatar
Tim O'Donnell committed
                max_alleles_per_experiment=self.max_alleles)

        score_array = []
        affinity_array = []

        for (i, network) in enumerate(self.models):
Tim O'Donnell's avatar
Tim O'Donnell committed
            predictions = network.predict(
                peptides=peptides,
                allele_encoding=alleles,
                batch_size=batch_size)
            score_array.append(predictions.score)
            affinity_array.append(predictions.affinity)

        score_array = numpy.array(score_array)
        affinity_array = numpy.array(affinity_array)

        ensemble_scores = numpy.mean(score_array, axis=0)
        ensemble_affinity = numpy.mean(affinity_array, axis=0)
        top_allele_index = numpy.argmax(ensemble_scores, axis=-1)
Tim O'Donnell's avatar
Tim O'Donnell committed
        top_allele_flat_indices = (
            numpy.arange(len(peptides)) * self.max_alleles + top_allele_index)
        top_score = ensemble_scores.flatten()[top_allele_flat_indices]
        top_affinity = ensemble_affinity.flatten()[top_allele_flat_indices]
Tim O'Donnell's avatar
Tim O'Donnell committed
        result_df = pandas.DataFrame({"peptide": peptides.sequences})
Tim O'Donnell's avatar
Tim O'Donnell committed
        result_df["allele"] = alleles.alleles.flatten()[top_allele_flat_indices]
Tim O'Donnell's avatar
Tim O'Donnell committed
        result_df["score"] = top_score
        result_df["affinity"] = to_ic50(top_affinity)

        if include_details:
            for i in range(self.max_alleles):
                result_df["allele%d" % (i + 1)] = alleles.allele[:, i]
                result_df["allele%d score" % (i + 1)] = ensemble_scores[:, i]
                result_df["allele%d score low" % (i + 1)] = numpy.percentile(
                    score_array[:, :, i], 5.0, axis=0)
                result_df["allele%d score high" % (i + 1)] = numpy.percentile(
                    score_array[:, :, i], 95.0, axis=0)
                result_df["allele%d affinity" % (i + 1)] = to_ic50(
                    ensemble_affinity[:, i])
Tim O'Donnell's avatar
Tim O'Donnell committed
                result_df["allele%d affinity low" % (i + 1)] = to_ic50(
                    numpy.percentile(affinity_array[:, :, i], 95.0, axis=0))
                result_df["allele%d affinity high" % (i + 1)] = to_ic50(
                    numpy.percentile(affinity_array[:, :, i], 5.0, axis=0))
Tim O'Donnell's avatar
Tim O'Donnell committed
        return result_df

Tim O'Donnell's avatar
Tim O'Donnell committed
    def check_consistency(self):
        """
        Verify that self.manifest_df is consistent with instance variables.

        Currently only checks for agreement on the total number of models.

        Throws AssertionError if inconsistent.
        """
        assert len(self.manifest_df) == len(self.models), (
Tim O'Donnell's avatar
Tim O'Donnell committed
            "Manifest seems out of sync with models: %d vs %d entries: \n%s"% (
                len(self.manifest_df),
                len(self.models),
Tim O'Donnell's avatar
Tim O'Donnell committed
                str(self.manifest_df)))

    def save(self, models_dir, model_names_to_write=None, write_metadata=True):
        """
        Serialize the predictor to a directory on disk. If the directory does
        not exist it will be created.

        The serialization format consists of a file called "manifest.csv" with
Tim O'Donnell's avatar
Tim O'Donnell committed
        the configurations of each Class1PresentationNeuralNetwork, along with
Tim O'Donnell's avatar
Tim O'Donnell committed
        per-network files giving the model weights.

        Parameters
        ----------
        models_dir : string
            Path to directory. It will be created if it doesn't exist.
        """
        self.check_consistency()

        if model_names_to_write is None:
            # Write all models
            model_names_to_write = self.manifest_df.model_name.values

        if not exists(models_dir):
            mkdir(models_dir)

        sub_manifest_df = self.manifest_df.loc[
            self.manifest_df.model_name.isin(model_names_to_write)
        ].copy()

        # Network JSON configs may have changed since the models were added,
        # for example due to changes to the allele representation layer.
        # So we update the JSON configs here also.
        updated_network_config_jsons = []
        for (_, row) in sub_manifest_df.iterrows():
            updated_network_config_jsons.append(
                json.dumps(row.model.get_config(), cls=NumpyJSONEncoder))
Tim O'Donnell's avatar
Tim O'Donnell committed
            weights_path = self.weights_path(models_dir, row.model_name)
Tim O'Donnell's avatar
Tim O'Donnell committed
            save_weights(row.model.get_weights(), weights_path)
Tim O'Donnell's avatar
Tim O'Donnell committed
            logging.info("Wrote: %s", weights_path)
        sub_manifest_df["config_json"] = updated_network_config_jsons
        self.manifest_df.loc[
            sub_manifest_df.index,
            "config_json"
        ] = updated_network_config_jsons

        write_manifest_df = self.manifest_df[[
            c for c in self.manifest_df.columns if c != "model"
        ]]
        manifest_path = join(models_dir, "manifest.csv")
        write_manifest_df.to_csv(manifest_path, index=False)
        logging.info("Wrote: %s", manifest_path)

        if write_metadata:
            # Write "info.txt"
            info_path = join(models_dir, "info.txt")
            rows = [
                ("trained on", time.asctime()),
                ("package   ", "mhcflurry %s" % __version__),
                ("hostname  ", gethostname()),
                ("user      ", getuser()),
            ]
            pandas.DataFrame(rows).to_csv(
                info_path, sep="\t", header=False, index=False)

            if self.metadata_dataframes:
                for (name, df) in self.metadata_dataframes.items():
                    metadata_df_path = join(models_dir, "%s.csv.bz2" % name)
                    df.to_csv(metadata_df_path, index=False, compression="bz2")

        # Save allele sequences
        if self.allele_to_sequence is not None:
            allele_to_sequence_df = pandas.DataFrame(
                list(self.allele_to_sequence.items()),
                columns=['allele', 'sequence']
            )
            allele_to_sequence_df.to_csv(
                join(models_dir, "allele_sequences.csv"), index=False)
            logging.info("Wrote: %s", join(models_dir, "allele_sequences.csv"))

    @classmethod
    def load(cls, models_dir=None, max_models=None):
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        Deserialize a predictor from a directory on disk.

        Parameters
        ----------
        models_dir : string
            Path to directory. If unspecified the default downloaded models are
            used.

        max_models : int, optional
            Maximum number of models to load

        Returns
        -------
        `Class1PresentationPredictor` instance
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        if models_dir is None:
            models_dir = get_default_class1_presentation_models_dir()
Tim O'Donnell's avatar
Tim O'Donnell committed

        manifest_path = join(models_dir, "manifest.csv")
        manifest_df = pandas.read_csv(manifest_path, nrows=max_models)

Tim O'Donnell's avatar
Tim O'Donnell committed
        for (_, row) in manifest_df.iterrows():
            weights_filename = cls.weights_path(models_dir, row.model_name)
Tim O'Donnell's avatar
Tim O'Donnell committed
            config = json.loads(row.config_json)
            model = Class1PresentationNeuralNetwork.from_config(
Tim O'Donnell's avatar
Tim O'Donnell committed
                config,
                weights=load_weights(abspath(weights_filename)))
            models.append(model)
Tim O'Donnell's avatar
Tim O'Donnell committed

        manifest_df["model"] = models
Tim O'Donnell's avatar
Tim O'Donnell committed

        # Load allele sequences
        allele_to_sequence = None
        if exists(join(models_dir, "allele_sequences.csv")):
            allele_to_sequence = pandas.read_csv(
                join(models_dir, "allele_sequences.csv"),
                index_col=0).iloc[:, 0].to_dict()

        logging.info("Loaded %d class1 presentation models", len(models))
        result = cls(
            models=models,
Tim O'Donnell's avatar
Tim O'Donnell committed
            allele_to_sequence=allele_to_sequence,
            manifest_df=manifest_df)
Tim O'Donnell's avatar
Tim O'Donnell committed
        return result