Skip to content
Snippets Groups Projects
class1_presentation_predictor.py 14.2 KiB
Newer Older
from __future__ import print_function

Tim O'Donnell's avatar
Tim O'Donnell committed
from os.path import join, exists, abspath
from os import mkdir, environ
from socket import gethostname
from getpass import getuser

Tim O'Donnell's avatar
Tim O'Donnell committed
import time
import collections
Tim O'Donnell's avatar
Tim O'Donnell committed
import json
import hashlib
import logging
Tim O'Donnell's avatar
Tim O'Donnell committed
from six import string_types
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
import numpy
Tim O'Donnell's avatar
Tim O'Donnell committed
import pandas
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
import mhcnames

from .hyperparameters import HyperparameterDefaults
Tim O'Donnell's avatar
Tim O'Donnell committed
from .version import __version__
Tim O'Donnell's avatar
Tim O'Donnell committed
from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
Tim O'Donnell's avatar
Tim O'Donnell committed
from .regression_target import from_ic50, to_ic50
from .random_negative_peptides import RandomNegativePeptides
Tim O'Donnell's avatar
Tim O'Donnell committed
from .allele_encoding import MultipleAlleleEncoding, AlleleEncoding
from .auxiliary_input import AuxiliaryInputEncoder
Tim O'Donnell's avatar
Tim O'Donnell committed
from .batch_generator import MultiallelicMassSpecBatchGenerator
Tim O'Donnell's avatar
Tim O'Donnell committed
from .custom_loss import (
    MSEWithInequalities,
Tim O'Donnell's avatar
Tim O'Donnell committed
    MultiallelicMassSpecLoss,
    ZeroLoss)
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
class Class1PresentationPredictor(object):
Tim O'Donnell's avatar
Tim O'Donnell committed
    def __init__(
            self,
Tim O'Donnell's avatar
Tim O'Donnell committed
            class1_presentation_neural_networks,
Tim O'Donnell's avatar
Tim O'Donnell committed
            allele_to_sequence,
            manifest_df=None,
            metadata_dataframes=None):
Tim O'Donnell's avatar
Tim O'Donnell committed
        self.networks = class1_presentation_neural_networks
Tim O'Donnell's avatar
Tim O'Donnell committed
        self.allele_to_sequence = allele_to_sequence
Tim O'Donnell's avatar
Tim O'Donnell committed
        self._manifest_df = manifest_df
        self.metadata_dataframes = (
            dict(metadata_dataframes) if metadata_dataframes else {})

    @property
    def manifest_df(self):
        """
        A pandas.DataFrame describing the models included in this predictor.

        Returns
        -------
        pandas.DataFrame
        """
        if self._manifest_df is None:
            rows = []
            for (i, model) in enumerate(self.networks):
                rows.append((
                    self.model_name(i),
                    json.dumps(model.get_config()),
                    model
                ))
            self._manifest_df = pandas.DataFrame(
                rows,
                columns=["model_name", "config_json", "model"])
        return self._manifest_df
Tim O'Donnell's avatar
Tim O'Donnell committed

    @property
    def max_alleles(self):
        max_alleles = self.networks[0].hyperparameters['max_alleles']
        assert all(
            n.hyperparameters['max_alleles'] == self.max_alleles
            for n in self.networks)
        return max_alleles

Tim O'Donnell's avatar
Tim O'Donnell committed
    @staticmethod
    def model_name(num):
        """
        Generate a model name

        Returns
        -------
        string

        """
        random_string = hashlib.sha1(
            str(time.time()).encode()).hexdigest()[:16]
        return "LIGANDOME-CLASSI-%d-%s" % (
            num,
            random_string)

    @staticmethod
    def weights_path(models_dir, model_name):
        """
        Generate the path to the weights file for a model

        Parameters
        ----------
        models_dir : string
        model_name : string

        Returns
        -------
        string
        """
        return join(models_dir, "weights_%s.npz" % model_name)

Tim O'Donnell's avatar
Tim O'Donnell committed
    def predict(self, peptides, alleles, batch_size=DEFAULT_PREDICT_BATCH_SIZE):
        return self.predict_to_dataframe(
            peptides=peptides,
            alleles=alleles,
            batch_size=batch_size).score.values

    def predict_to_dataframe(
Tim O'Donnell's avatar
Tim O'Donnell committed
            self,
            peptides,
Tim O'Donnell's avatar
Tim O'Donnell committed
            alleles,
            include_details=False,
Tim O'Donnell's avatar
Tim O'Donnell committed
            batch_size=DEFAULT_PREDICT_BATCH_SIZE):
Tim O'Donnell's avatar
Tim O'Donnell committed

        if isinstance(peptides, string_types):
            raise TypeError("peptides must be a list or array, not a string")
        if isinstance(alleles, string_types):
            raise TypeError(
Tim O'Donnell's avatar
Tim O'Donnell committed
                "alleles must be an iterable or MultipleAlleleEncoding")
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
        peptides = EncodableSequences.create(peptides)
Tim O'Donnell's avatar
Tim O'Donnell committed

        if not isinstance(alleles, MultipleAlleleEncoding):
Tim O'Donnell's avatar
Tim O'Donnell committed
            if len(alleles) > self.max_alleles:
                raise ValueError(
                    "When alleles is a list, it must have at most %d elements. "
                    "These alleles are taken to be a genotype for an "
                    "individual, and the strongest prediction across alleles "
                    "will be taken for each peptide. Note that this differs "
                    "from Class1AffinityPredictor.predict(), where alleles "
                    "is expected to be the same length as peptides."
                    % (
                        self.max_alleles))
            alleles = MultipleAlleleEncoding(
                experiment_names=numpy.tile("experiment", len(peptides)),
                experiment_to_allele_list={
Tim O'Donnell's avatar
Tim O'Donnell committed
                    "experiment": [
                        mhcnames.normalize_allele_name(a) for a in alleles
                    ],
Tim O'Donnell's avatar
Tim O'Donnell committed
                },
Tim O'Donnell's avatar
Tim O'Donnell committed
                allele_to_sequence=self.allele_to_sequence,
Tim O'Donnell's avatar
Tim O'Donnell committed
                max_alleles_per_experiment=self.max_alleles)

        score_array = []
        affinity_array = []

        for (i, network) in enumerate(self.networks):
            predictions = network.predict(
                peptides=peptides,
                allele_encoding=alleles,
                batch_size=batch_size)
            score_array.append(predictions.score)
            affinity_array.append(predictions.affinity)

        score_array = numpy.array(score_array)
        affinity_array = numpy.array(affinity_array)

        ensemble_scores = numpy.mean(score_array, axis=0)
        ensemble_affinity = numpy.mean(affinity_array, axis=0)
        top_allele_index = numpy.argmax(ensemble_scores, axis=-1)
        top_score = ensemble_scores[top_allele_index]
        top_affinity = ensemble_affinity[top_allele_index]

        result_df = pandas.DataFrame({"peptide": peptides.sequences})
        result_df["allele"] = alleles.alleles[top_allele_index]
        result_df["score"] = top_score
        result_df["affinity"] = to_ic50(top_affinity)

        if include_details:
            for i in range(self.max_alleles):
                result_df["allele%d" % (i + 1)] = alleles.allele[:, i]
                result_df["allele%d score" % (i + 1)] = ensemble_scores[:, i]
                result_df["allele%d score low" % (i + 1)] = numpy.percentile(
                    score_array[:, :, i], 5.0, axis=0)
                result_df["allele%d score high" % (i + 1)] = numpy.percentile(
                    score_array[:, :, i], 95.0, axis=0)
                result_df["allele%d affinity" % (i + 1)] = to_ic50(
                    ensemble_affinity[:, i])
Tim O'Donnell's avatar
Tim O'Donnell committed
                result_df["allele%d affinity low" % (i + 1)] = to_ic50(
                    numpy.percentile(affinity_array[:, :, i], 95.0, axis=0))
                result_df["allele%d affinity high" % (i + 1)] = to_ic50(
                    numpy.percentile(affinity_array[:, :, i], 5.0, axis=0))
Tim O'Donnell's avatar
Tim O'Donnell committed
        return result_df

Tim O'Donnell's avatar
Tim O'Donnell committed
    @staticmethod
    def save_weights(weights_list, filename):
        """
        Save the model weights to the given filename using numpy's ".npz"
        format.

        Parameters
        ----------
        weights_list : list of array

        filename : string
            Should end in ".npz".

        """
        numpy.savez(
            filename,
            **dict((("array_%d" % i), w) for (i, w) in enumerate(weights_list)))

    def check_consistency(self):
        """
        Verify that self.manifest_df is consistent with instance variables.

        Currently only checks for agreement on the total number of models.

        Throws AssertionError if inconsistent.
        """
        assert len(self.manifest_df) == len(self.networks), (
            "Manifest seems out of sync with models: %d vs %d entries: \n%s"% (
                len(self.manifest_df),
                len(self.networks),
                str(self.manifest_df)))

    def save(self, models_dir, model_names_to_write=None, write_metadata=True):
        """
        Serialize the predictor to a directory on disk. If the directory does
        not exist it will be created.

        The serialization format consists of a file called "manifest.csv" with
Tim O'Donnell's avatar
Tim O'Donnell committed
        the configurations of each Class1PresentationNeuralNetwork, along with
Tim O'Donnell's avatar
Tim O'Donnell committed
        per-network files giving the model weights.

        Parameters
        ----------
        models_dir : string
            Path to directory. It will be created if it doesn't exist.
        """
        self.check_consistency()

        if model_names_to_write is None:
            # Write all models
            model_names_to_write = self.manifest_df.model_name.values

        if not exists(models_dir):
            mkdir(models_dir)

        sub_manifest_df = self.manifest_df.loc[
            self.manifest_df.model_name.isin(model_names_to_write)
        ].copy()

        # Network JSON configs may have changed since the models were added,
        # for example due to changes to the allele representation layer.
        # So we update the JSON configs here also.
        updated_network_config_jsons = []
        for (_, row) in sub_manifest_df.iterrows():
            updated_network_config_jsons.append(
                json.dumps(row.model.get_config()))
            weights_path = self.weights_path(models_dir, row.model_name)
            self.save_weights(
                row.model.get_weights(), weights_path)
            logging.info("Wrote: %s", weights_path)
        sub_manifest_df["config_json"] = updated_network_config_jsons
        self.manifest_df.loc[
            sub_manifest_df.index,
            "config_json"
        ] = updated_network_config_jsons

        write_manifest_df = self.manifest_df[[
            c for c in self.manifest_df.columns if c != "model"
        ]]
        manifest_path = join(models_dir, "manifest.csv")
        write_manifest_df.to_csv(manifest_path, index=False)
        logging.info("Wrote: %s", manifest_path)

        if write_metadata:
            # Write "info.txt"
            info_path = join(models_dir, "info.txt")
            rows = [
                ("trained on", time.asctime()),
                ("package   ", "mhcflurry %s" % __version__),
                ("hostname  ", gethostname()),
                ("user      ", getuser()),
            ]
            pandas.DataFrame(rows).to_csv(
                info_path, sep="\t", header=False, index=False)

            if self.metadata_dataframes:
                for (name, df) in self.metadata_dataframes.items():
                    metadata_df_path = join(models_dir, "%s.csv.bz2" % name)
                    df.to_csv(metadata_df_path, index=False, compression="bz2")

        # Save allele sequences
        if self.allele_to_sequence is not None:
            allele_to_sequence_df = pandas.DataFrame(
                list(self.allele_to_sequence.items()),
                columns=['allele', 'sequence']
            )
            allele_to_sequence_df.to_csv(
                join(models_dir, "allele_sequences.csv"), index=False)
            logging.info("Wrote: %s", join(models_dir, "allele_sequences.csv"))

    @staticmethod
    def load(models_dir=None, max_models=None):
        """
        Deserialize a predictor from a directory on disk.

        Parameters
        ----------
        models_dir : string
            Path to directory. If unspecified the default downloaded models are
            used.

        max_models : int, optional
            Maximum number of models to load

        Returns
        -------
        `Class1AffinityPredictor` instance
        """
        if models_dir is None:
            models_dir = get_default_class1_models_dir()

        manifest_path = join(models_dir, "manifest.csv")
        manifest_df = pandas.read_csv(manifest_path, nrows=max_models)

        allele_to_allele_specific_models = collections.defaultdict(list)
        class1_pan_allele_models = []
        all_models = []
        for (_, row) in manifest_df.iterrows():
            weights_filename = Class1AffinityPredictor.weights_path(
                models_dir, row.model_name)
            config = json.loads(row.config_json)

            # We will lazy-load weights when the network is used.
            model = Class1NeuralNetwork.from_config(
                config,
                weights_loader=partial(
                    Class1AffinityPredictor.load_weights,
                    abspath(weights_filename)))
            if row.allele == "pan-class1":
                class1_pan_allele_models.append(model)
            else:
                allele_to_allele_specific_models[row.allele].append(model)
            all_models.append(model)

        manifest_df["model"] = all_models

        # Load allele sequences
        allele_to_sequence = None
        if exists(join(models_dir, "allele_sequences.csv")):
            allele_to_sequence = pandas.read_csv(
                join(models_dir, "allele_sequences.csv"),
                index_col=0).iloc[:, 0].to_dict()

        allele_to_percent_rank_transform = {}
        percent_ranks_path = join(models_dir, "percent_ranks.csv")
        if exists(percent_ranks_path):
            percent_ranks_df = pandas.read_csv(percent_ranks_path, index_col=0)
            for allele in percent_ranks_df.columns:
                allele_to_percent_rank_transform[allele] = (
                    PercentRankTransform.from_series(percent_ranks_df[allele]))

        logging.info(
            "Loaded %d class1 pan allele predictors, %d allele sequences, "
            "%d percent rank distributions, and %d allele specific models: %s",
            len(class1_pan_allele_models),
            len(allele_to_sequence) if allele_to_sequence else 0,
            len(allele_to_percent_rank_transform),
            sum(len(v) for v in allele_to_allele_specific_models.values()),
            ", ".join(
                "%s (%d)" % (allele, len(v))
                for (allele, v)
                in sorted(allele_to_allele_specific_models.items())))

        result = Class1AffinityPredictor(
            allele_to_allele_specific_models=allele_to_allele_specific_models,
            class1_pan_allele_models=class1_pan_allele_models,
            allele_to_sequence=allele_to_sequence,
            manifest_df=manifest_df,
            allele_to_percent_rank_transform=allele_to_percent_rank_transform,
        )
        if optimization_level >= 1:
            optimized = result.optimize()
            logging.info(
                "Model optimization %s",
                "succeeded" if optimized else "not supported for these models")
        return result


Tim O'Donnell's avatar
Tim O'Donnell committed

    # TODO: implement saving and loading