Newer
Older
masked_peptides = peptides.sequences[mask]
for (i, model) in enumerate(self.class1_pan_allele_models):
predictions_array[mask, i] = model.predict(
if not self.allele_to_allele_specific_models.get(allele)
]
if unsupported_alleles:
msg = (
"No single-allele models for allele(s): %s.\n"
"Supported alleles are: %s" % (
mask = None
else:
mask = (
(df.normalized_allele == allele) &
df.supported_peptide_length).values
if mask is None or mask.all():
# Common case optimization
for (i, model) in enumerate(models):
predictions_array[:, num_pan_models + i] = (
model.predict(peptides))
peptides_for_allele = EncodableSequences.create(
df.ix[mask].peptide.values)
for (i, model) in enumerate(models):
predictions_array[
mask,
num_pan_models + i,
] = model.predict(peptides_for_allele)
if callable(centrality_measure):
centrality_function = centrality_measure
else:
centrality_function = CENTRALITY_MEASURES[centrality_measure]
logs = numpy.log(predictions_array)
log_centers = centrality_function(logs)
df["prediction"] = numpy.exp(log_centers)
Tim O'Donnell
committed
df["prediction_low"] = numpy.exp(numpy.nanpercentile(logs, 5.0, axis=1))
df["prediction_high"] = numpy.exp(numpy.nanpercentile(logs, 95.0, axis=1))
for i in range(num_pan_models):
df["model_pan_%d" % i] = predictions_array[:, i]
for i in range(max_single_allele_models):
df["model_single_%d" % i] = predictions_array[
:, num_pan_models + i
]
if include_percentile_ranks:
if self.allele_to_percent_rank_transform:
df["prediction_percentile"] = self.percentile_ranks(
df.prediction,
alleles=df.normalized_allele.values,
throw=throw)
else:
warnings.warn("No percentile rank information available.")
del df["supported_peptide_length"]
del df["normalized_allele"]
return df
Save the model weights to the given filename using numpy's ".npz"
format.
numpy.savez(
filename,
**dict((("array_%d" % i), w) for (i, w) in enumerate(weights_list)))
Restore model weights from the given filename, which should have been
created with `save_weights`.
with numpy.load(filename) as loaded:
weights = [
loaded["array_%d" % i]
for i in range(len(loaded.keys()))
]
def calibrate_percentile_ranks(
self,
peptides=None,
num_peptides_per_length=int(1e5),
alleles=None,
bins=None):
"""
Compute the cumulative distribution of ic50 values for a set of alleles
over a large universe of random peptides, to enable computing quantiles in
this distribution later.
Parameters
----------
peptides : sequence of string or EncodableSequences, optional
Peptides to use
num_peptides_per_length : int, optional
If peptides argument is not specified, then num_peptides_per_length
peptides are randomly sampled from a uniform distribution for each
supported length
alleles : sequence of string, optional
Alleles to perform calibration for. If not specified all supported
alleles will be calibrated.
bins : object
Anything that can be passed to numpy.histogram's "bins" argument
can be used here, i.e. either an integer or a sequence giving bin
edges. This is in ic50 space.
Returns
----------
EncodableSequences : peptides used for calibration
"""
if bins is None:
bins = to_ic50(numpy.linspace(1, 0, 1000))
if alleles is None:
alleles = self.supported_alleles
if peptides is None:
peptides = []
lengths = range(
self.supported_peptide_lengths[0],
self.supported_peptide_lengths[1] + 1)
for length in lengths:
peptides.extend(
random_peptides(num_peptides_per_length, length))
encoded_peptides = EncodableSequences.create(peptides)
for (i, allele) in enumerate(alleles):
predictions = self.predict(encoded_peptides, allele=allele)
transform = PercentRankTransform()
transform.fit(predictions, bins=bins)
self.allele_to_percent_rank_transform[allele] = transform
return encoded_peptides
def filter_networks(self, predicate):
"""
Return a new Class1AffinityPredictor containing a subset of this
predictor's neural networks.
Parameters
----------
predicate : Class1NeuralNetwork -> boolean
Function specifying which neural networks to include
Returns
-------
Class1AffinityPredictor
"""
allele_to_allele_specific_models = {}
for (allele, models) in self.allele_to_allele_specific_models.items():
allele_to_allele_specific_models[allele] = [
m for m in models if predicate(m)
]
class1_pan_allele_models = [
m for m in self.class1_pan_allele_models if predicate(m)
]
return Class1AffinityPredictor(
allele_to_allele_specific_models=allele_to_allele_specific_models,
class1_pan_allele_models=class1_pan_allele_models,
Tim O'Donnell
committed
allele_to_sequence=self.allele_to_sequence,
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
)
def model_select(
self,
score_function,
alleles=None,
min_models=1,
max_models=10000):
"""
Perform model selection using a user-specified scoring function.
Model selection is done using a "step up" variable selection procedure,
in which models are repeatedly added to an ensemble until the score
stops improving.
Parameters
----------
score_function : Class1AffinityPredictor -> float function
Scoring function
alleles : list of string, optional
If not specified, model selection is performed for all alleles.
min_models : int, optional
Min models to select per allele
max_models : int, optional
Max models to select per allele
Returns
-------
Class1AffinityPredictor : predictor containing the selected models
"""
if alleles is None:
alleles = self.supported_alleles
dfs = []
allele_to_allele_specific_models = {}
for allele in alleles:
df = pandas.DataFrame({
'model': self.allele_to_allele_specific_models[allele]
})
df["model_num"] = df.index
df["allele"] = allele
df["selected"] = False
round_num = 1
while not df.selected.all() and sum(df.selected) < max_models:
score_col = "score_%2d" % round_num
prev_score_col = "score_%2d" % (round_num - 1)
existing_selected = list(df[df.selected].model)
df[score_col] = [
numpy.nan if row.selected else
score_function(
Class1AffinityPredictor(
allele_to_allele_specific_models={
allele: [row.model] + existing_selected
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
for (_, row) in df.iterrows()
]
if round_num > min_models and (
df[score_col].max() < df[prev_score_col].max()):
break
# In case of a tie, pick a model at random.
(best_model_index,) = df.loc[
(df[score_col] == df[score_col].max())
].sample(1).index
df.loc[best_model_index, "selected"] = True
round_num += 1
dfs.append(df)
allele_to_allele_specific_models[allele] = list(
df.loc[df.selected].model)
df = pandas.concat(dfs, ignore_index=True)
new_predictor = Class1AffinityPredictor(
allele_to_allele_specific_models,
metadata_dataframes={
"model_selection": df,
})
return new_predictor