Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
26471d29
Commit
26471d29
authored
7 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
Build Class1AffinityPredictor.manifest_df lazily
parent
d7e3af61
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
mhcflurry/class1_affinity_predictor.py
+24
-15
24 additions, 15 deletions
mhcflurry/class1_affinity_predictor.py
mhcflurry/select_allele_specific_models_command.py
+11
-12
11 additions, 12 deletions
mhcflurry/select_allele_specific_models_command.py
with
35 additions
and
27 deletions
mhcflurry/class1_affinity_predictor.py
+
24
−
15
View file @
26471d29
...
...
@@ -86,8 +86,20 @@ class Class1AffinityPredictor(object):
self
.
allele_to_allele_specific_models
=
allele_to_allele_specific_models
self
.
class1_pan_allele_models
=
class1_pan_allele_models
self
.
allele_to_fixed_length_sequence
=
allele_to_fixed_length_sequence
self
.
_manifest_df
=
manifest_df
if
manifest_df
is
None
:
if
not
allele_to_percent_rank_transform
:
allele_to_percent_rank_transform
=
{}
self
.
allele_to_percent_rank_transform
=
allele_to_percent_rank_transform
self
.
metadata_dataframes
=
metadata_dataframes
self
.
_cache
=
{}
@property
def
manifest_df
(
self
):
if
self
.
_manifest_df
is
None
:
# Make a manifest based on
# - self.class1_pan_allele_models
# - self.allele_to_allele_specific_models
rows
=
[]
for
(
i
,
model
)
in
enumerate
(
self
.
class1_pan_allele_models
):
rows
.
append
((
...
...
@@ -96,7 +108,8 @@ class Class1AffinityPredictor(object):
json
.
dumps
(
model
.
get_config
()),
model
))
for
(
allele
,
models
)
in
self
.
allele_to_allele_specific_models
.
items
():
for
(
allele
,
models
)
in
self
.
allele_to_allele_specific_models
.
items
():
for
(
i
,
model
)
in
enumerate
(
models
):
rows
.
append
((
self
.
model_name
(
allele
,
i
),
...
...
@@ -104,16 +117,10 @@ class Class1AffinityPredictor(object):
json
.
dumps
(
model
.
get_config
()),
model
))
manifest_df
=
pandas
.
DataFrame
(
self
.
_
manifest_df
=
pandas
.
DataFrame
(
rows
,
columns
=
[
"
model_name
"
,
"
allele
"
,
"
config_json
"
,
"
model
"
])
self
.
manifest_df
=
manifest_df
if
not
allele_to_percent_rank_transform
:
allele_to_percent_rank_transform
=
{}
self
.
allele_to_percent_rank_transform
=
allele_to_percent_rank_transform
self
.
metadata_dataframes
=
metadata_dataframes
self
.
_cache
=
{}
return
self
.
_manifest_df
def
clear_cache
(
self
):
"""
...
...
@@ -209,7 +216,7 @@ class Class1AffinityPredictor(object):
(
"
config_json
"
,
json
.
dumps
(
model
.
get_config
())),
(
"
model
"
,
model
),
])).
to_frame
().
T
self
.
manifest_df
=
pandas
.
concat
(
self
.
_
manifest_df
=
pandas
.
concat
(
[
self
.
manifest_df
,
row
],
ignore_index
=
True
)
new_model_names
.
append
(
model_name
)
...
...
@@ -225,7 +232,7 @@ class Class1AffinityPredictor(object):
(
"
config_json
"
,
json
.
dumps
(
model
.
get_config
())),
(
"
model
"
,
model
),
])).
to_frame
().
T
self
.
manifest_df
=
pandas
.
concat
(
self
.
_
manifest_df
=
pandas
.
concat
(
[
self
.
manifest_df
,
row
],
ignore_index
=
True
)
current_models
.
append
(
model
)
new_model_names
.
append
(
model_name
)
...
...
@@ -609,7 +616,7 @@ class Class1AffinityPredictor(object):
(
"
config_json
"
,
json
.
dumps
(
model
.
get_config
())),
(
"
model
"
,
model
),
])).
to_frame
().
T
self
.
manifest_df
=
pandas
.
concat
(
self
.
_
manifest_df
=
pandas
.
concat
(
[
self
.
manifest_df
,
row
],
ignore_index
=
True
)
self
.
allele_to_allele_specific_models
[
allele
].
append
(
model
)
if
models_dir_for_save
:
...
...
@@ -702,7 +709,7 @@ class Class1AffinityPredictor(object):
(
"
config_json
"
,
json
.
dumps
(
model
.
get_config
())),
(
"
model
"
,
model
),
])).
to_frame
().
T
self
.
manifest_df
=
pandas
.
concat
(
self
.
_
manifest_df
=
pandas
.
concat
(
[
self
.
manifest_df
,
row
],
ignore_index
=
True
)
if
models_dir_for_save
:
self
.
save
(
...
...
@@ -1207,7 +1214,9 @@ class Class1AffinityPredictor(object):
Class1AffinityPredictor
(
allele_to_allele_specific_models
=
{
allele
:
[
row
.
model
]
+
existing_selected
}))
}
)
)
for
(
_
,
row
)
in
df
.
iterrows
()
]
...
...
This diff is collapsed.
Click to expand it.
mhcflurry/select_allele_specific_models_command.py
+
11
−
12
View file @
26471d29
...
...
@@ -146,7 +146,7 @@ parser.add_argument(
parser
.
add_argument
(
"
--consensus-num-peptides-per-length
"
,
type
=
int
,
default
=
10000
0
,
default
=
10000
,
help
=
"
Num peptides per length to use for consensus scoring
"
)
parser
.
add_argument
(
"
--mass-spec-regex
"
,
...
...
@@ -364,6 +364,13 @@ def model_select(allele):
**
model_selection_kwargs
)
def
cache_encoding
(
predictor
,
peptides
):
# Encode the peptides for each neural network, so the encoding
# becomes cached.
for
network
in
predictor
.
neural_networks
:
network
.
peptides_to_network_input
(
peptides
)
class
CombinedModelSelector
(
object
):
def
__init__
(
self
,
model_selectors
,
weights
=
None
):
if
weights
is
None
:
...
...
@@ -396,7 +403,7 @@ class ConsensusModelSelector(object):
def
__init__
(
self
,
predictor
,
num_peptides_per_length
=
10000
0
,
num_peptides_per_length
=
10000
,
multiply_score_by_value
=
10.0
):
(
min_length
,
max_length
)
=
predictor
.
supported_peptide_lengths
...
...
@@ -408,11 +415,7 @@ class ConsensusModelSelector(object):
self
.
peptides
=
EncodableSequences
.
create
(
peptides
)
self
.
predictor
=
predictor
self
.
multiply_score_by_value
=
multiply_score_by_value
# Encode the peptides for each neural network, so the encoding
# becomes cached.
for
network
in
predictor
.
neural_networks
:
network
.
peptides_to_network_input
(
self
.
peptides
)
cache_encoding
(
self
.
predictor
,
self
.
peptides
)
def
usable_for_allele
(
self
,
allele
):
return
True
...
...
@@ -513,11 +516,7 @@ class MassSpecModelSelector(object):
self
.
multiply_score_by_data_size
=
multiply_score_by_data_size
self
.
peptides
=
EncodableSequences
.
create
(
full_matrix
.
index
.
values
)
# Encode the peptides for each neural network, so the encoding
# becomes cached.
for
network
in
predictor
.
neural_networks
:
network
.
peptides_to_network_input
(
self
.
peptides
)
cache_encoding
(
self
.
predictor
,
self
.
peptides
)
@staticmethod
def
ppv
(
y_true
,
predictions
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment