Newer
Older
Alex Rubinsteyn
committed
# Copyright (c) 2015. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
Tim O'Donnell
committed
from .class1_allele_specific_ensemble import class1_ensemble_multi_allele_predictor
from .common import normalize_allele_name, UnsupportedAllele
Tim O'Donnell
committed
from .peptide_encoding import encode_peptides
Tim O'Donnell
committed
def predict(alleles, peptides, predictor=None):
Make predictions across all combinations of the specified alleles and
peptides.
Parameters
----------
alleles : list of str
Names of alleles to make predictions for.
peptides : list of str
Peptide amino acid sequences.
predictor : Predictor to use. Defaults to downloaded Class1SingleModelMultiAllelePredictor.
Returns DataFrame with columns "Allele", "Peptide", and "Prediction"
"""
Tim O'Donnell
committed
predictor = class1_ensemble_multi_allele_predictor.get_downloaded_predictor()
if len(peptides) == 0 or len(alleles) == 0:
return pandas.DataFrame(columns=["Peptide", "Allele", "Prediction"])
peptides = numpy.unique(peptides)
encoded_peptides = encode_peptides(peptides)
result_dfs = []
result_df = pandas.DataFrame()
result_df["Peptide"] = peptides
for allele in alleles:
allele = normalize_allele_name(allele)
predictions = predictor.predict_for_allele(allele, encoded_peptides)
result_df = result_df.copy()
result_df["Allele"] = allele
result_df["Prediction"] = predictions
result_dfs.append(result_df)
return pandas.concat(result_dfs, ignore_index=True)