# Copyright (c) 2015. Mount Sinai School of Medicine # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import pandas import numpy from .class1_allele_specific_ensemble import class1_ensemble_multi_allele_predictor from .common import normalize_allele_name, UnsupportedAllele from .peptide_encoding import encode_peptides def predict(alleles, peptides, predictor=None): """ Make predictions across all combinations of the specified alleles and peptides. Parameters ---------- alleles : list of str Names of alleles to make predictions for. peptides : list of str Peptide amino acid sequences. predictor : Predictor to use. Defaults to downloaded Class1SingleModelMultiAllelePredictor. Returns DataFrame with columns "Allele", "Peptide", and "Prediction" """ if predictor is None: predictor = class1_ensemble_multi_allele_predictor.get_downloaded_predictor() if len(peptides) == 0 or len(alleles) == 0: return pandas.DataFrame(columns=["Peptide", "Allele", "Prediction"]) peptides = numpy.unique(peptides) encoded_peptides = encode_peptides(peptides) result_dfs = [] result_df = pandas.DataFrame() result_df["Peptide"] = peptides for allele in alleles: allele = normalize_allele_name(allele) predictions = predictor.predict_for_allele(allele, encoded_peptides) result_df = result_df.copy() result_df["Allele"] = allele result_df["Prediction"] = predictions result_dfs.append(result_df) return pandas.concat(result_dfs, ignore_index=True)