Newer
Older
[](https://travis-ci.org/openvax/mhcflurry)
[documented](http://openvax.github.io/mhcflurry/) implementation.
MHCflurry implements class I peptide/MHC binding affinity prediction. By default
it supports 112 MHC alleles using ensembles of allele-specific models.
Pan-allele predictors supporting virtually any MHC allele of known sequence
are available for testing (see below). MHCflurry runs on Python 2.7 and 3.4+ using the
[keras](https://keras.io) neural network library.
It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html)
interfaces.
If you find MHCflurry useful in your research please cite:
> T. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction," *Cell Systems*, 2018. Available at: https://www.cell.com/cell-systems/fulltext/S2405-4712(18)30232-1.
Have a bugfix or other contribution? We would love your help. See our [contributing guidelines](CONTRIBUTING.md) for more information.
## Installation (pip)
Install the package:
```
$ pip install mhcflurry
```
Then download our datasets and trained models:
```
$ mhcflurry-downloads fetch
```
You can now generate predictions:
```
$ mhcflurry-predict \
--alleles HLA-A0201 HLA-A0301 \
--peptides SIINFEKL SIINFEKD SIINFEKQ \
--out /tmp/predictions.csv
See the [documentation](http://openvax.github.io/mhcflurry/) for more details.
We are testing new models that support prediction for any MHC I allele of known
sequence (as opposed to the 112 alleles supported by the allele-specific
predictors). These models are trained on both affinity measurements and mass spec.
To try the pan-allele models, first download them:
```
$ mhcflurry-downloads fetch models_class1_pan
```
then set this environment variable to use them by default:
```
$ export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_pan)/models.with_mass_spec"
```
You can now generate predictions for about 14,000 MHC I alleles. For example:
```
$ mhcflurry-predict --alleles HLA-A*02:04 --peptides SIINFEKL
```
If you use these models please let us know how it goes.
## Other allele-specific models
The default MHCflurry models are trained on affinity measurements, one allele
per model (i.e. allele-specific). Mass spec datasets are incorporated in the
model selection step.
We also release experimental allele-specific predictors whose training data
directly includes mass spec. To download these predictors, run:
```
$ mhcflurry-downloads fetch models_class1_trained_with_mass_spec
```
and then to make them used by default:
```
$ export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_trained_with_mass_spec)/models"
```
We also release predictors that do not use mass spec datasets at all. To use
these predictors, run:
```
$ mhcflurry-downloads fetch models_class1_selected_no_mass_spec
export MHCFLURRY_DEFAULT_CLASS1_MODELS="$(mhcflurry-downloads path models_class1_selected_no_mass_spec)/models"