Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
Idea:
Fully convolutional network with softmax output. Let it take a 35mer:
- N flank [10 aa]
- peptide [7-15 aa]
- C flank [10 aa]
Train on monoallelic mass spec. Match positive examples (hits) to negatives
from the same sample by finding unobserved peptides with as close as possible
a match for predicted binding affinity.
In final layer, take max cleavage score over peptide and the individual score
for the position right before the peptide terminus. Compute the ratio of these.
Or actually reverse of that. Hits get label 1, decoys get 0.
For a hit with sequence
NNNNNNNNNNPPPPPPPPPCCCCCCCCCC
penalize on:
[----------1000000000---------]
For a decoy with same sequence, penalize it on:
[----------0-----------------]
Train separate models for N- and C-terminal cleavage.
Issue:
- it'll learn mass spec biases in the peptide
Possible fix:
- Also provide the amino acid counts of the peptide as auxiliary inputs. After
training, set the cysteine value to 0.
Architecture:
architecture (for N terminal: for C terminal reverse the sequences):
input of length S=25 [flank + left-aligned peptide]
*** conv [vector of length S] ***
*** [more convs and local pools] ***
*** output [vector of length S] ***
*** extract: position 10 and max of peptide positions [2-vector]
*** concat:[position 10, max of peptide positions, number of Alananine, ..., number of Y in peptide]
*** single dense node, softmax activation [1-vector]
Train on monoallelic.
Decoys are length-matched to hits and sampled from the same transcripts, selecting
an unobeserved peptide with as close as possible the same predicted affinity.
*** + repeat vector for each position
*** conv ***
*** conv ***
*** ... conv n ***
*** repeat vector for each position
*** dense per-position
*** output [35-vector]
*** extract: position 10 and max of peptide positions [2-vector]
*** dense
*** output
IDEA 2:
- Two inputs: N-flank + peptide (left aligned), peptide (right alighted + C-flank
- Bunch of convolutions
- Global max pooling
- Dense
"""
from __future__ import print_function
import time
import collections
import numpy
from .hyperparameters import HyperparameterDefaults
from .class1_neural_network import DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
class Class1CleavageNeuralNetwork(object):
network_hyperparameter_defaults = HyperparameterDefaults(
amino_acid_encoding="BLOSUM62",
peptide_max_length=15,
n_flank_length=10,
c_flank_length=10,
vector_encoding_name="BLOSUM62",
convolutional_filters=16,
convolutional_kernel_size=8,
convolutional_activation="relu",
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
validation_split=0.1,
early_stopping=True,
minibatch_size=256,
)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
learning_rate=None,
)
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
auxiliary_input_hyperparameter_defaults = HyperparameterDefaults(
)
"""
Allele feature hyperparameters.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
compile_hyperparameter_defaults).extend(
auxiliary_input_hyperparameter_defaults)
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
self._network = None
self.network_json = None
self.network_weights = None
def network(self):
"""
Return the keras model associated with this network.
"""
if self._network is None and self.network_json is not None:
import keras.models
self._network = keras.models.model_from_json(self.network_json)
if self.network_weights is not None:
self._network.set_weights(self.network_weights)
return self._network
def update_network_description(self):
"""
Update self.network_json and self.network_weights properties based on
this instances's neural network.
"""
network = self.network()
if network is None:
self.network_json = None
self.network_weights = None
else:
self.network_json = network.to_json()
self.network_weights = network.get_weights()
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def fit(
self,
peptides,
n_flanks,
c_flanks,
targets,
sample_weights=None,
shuffle_permutation=None,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
"""
Parameters
----------
peptides
n_flanks
c_flanks
targets : array of {0, 1} indicating hits (1) or decoys (0)
Returns
-------
"""
import keras.backend as K
peptides = EncodableSequences.create(peptides)
n_flanks = EncodableSequences.create(n_flanks)
c_flanks = EncodableSequences.create(c_flanks)
peptides, n_flanks, c_flanks)
# Shuffle
if shuffle_permutation is None:
shuffle_permutation = numpy.random.permutation(len(targets))
targets = targets[shuffle_permutation]
assert numpy.isnan(targets).sum() == 0, targets
if sample_weights is not None:
sample_weights = numpy.array(sample_weights)[shuffle_permutation]
for key in list(x_dict):
x_dict[key] = x_dict[key][shuffle_permutation]
fit_info = collections.defaultdict(list)
**self.network_hyperparameter_defaults.subselect(
self.hyperparameters))
if verbose > 0:
loss="binary_crossentropy",
optimizer=self.hyperparameters['optimizer'])
last_progress_print = None
min_val_loss_iteration = None
min_val_loss = None
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
epoch_start = time.time()
targets,
validation_split=self.hyperparameters['validation_split'],
batch_size=self.hyperparameters['minibatch_size'],
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
epochs=i + 1,
sample_weight=sample_weights,
initial_epoch=i,
verbose=verbose)
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if self.hyperparameters['validation_split']:
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss - self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
fit_info["num_points"] = len(peptides)
self.fit_info.append(dict(fit_info))
if verbose:
print(
"Output weights",
*numpy.array(
def predict(
self,
peptides,
n_flanks,
c_flanks,
batch_size=DEFAULT_PREDICT_BATCH_SIZE):
"""
"""
x_list = self.peptides_and_flanking_to_network_input(
peptides, n_flanks, c_flanks)
predictions = numpy.array(raw_predictions, dtype="float64")[:,0]
return predictions
def peptides_and_flanking_to_network_input(self, peptides, n_flanks, c_flanks):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
peptides = EncodableSequences.create(peptides)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
result = {}
result['peptide_right_pad'] = (
peptides.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['peptide_max_length'],
alignment_method='right_pad'))
result['peptide_left_pad'] = (
peptides.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['peptide_max_length'],
alignment_method='left_pad'))
if self.hyperparameters['n_flank_length'] > 0:
n_flanks = EncodableSequences.create(n_flanks)
result['n_flank'] = (
n_flanks.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['n_flank_length'],
alignment_method='left_pad',
trim=True,
allow_unsupported_amino_acids=True))
if self.hyperparameters['c_flank_length'] > 0:
c_flanks = EncodableSequences.create(c_flanks)
result['c_flank'] = (
c_flanks.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['c_flank_length'],
alignment_method='right_pad',
trim=True,
allow_unsupported_amino_acids=True))
return result
def make_network(
self,
amino_acid_encoding,
peptide_max_length,
n_flank_length,
c_flank_length,
convolutional_filters,
convolutional_kernel_size,
convolutional_activation,
convolutional_kernel_l1_l2,
dropout_rate,
post_convolutional_dense_layer_sizes):
"""
Helper function to make a keras network
"""
# We import keras here to avoid tensorflow debug output, etc. unless we
# are actually about to use Keras.
from keras.layers import Input
import keras.layers.pooling
from keras.layers.core import Dense, Flatten, Dropout
from keras.layers.merge import Concatenate
empty_x_dict = self.peptides_and_flanking_to_network_input(
peptides=[], n_flanks=[], c_flanks=[])
model_inputs['peptide_right_pad'] = Input(
shape=empty_x_dict['peptide_right_pad'].shape[1:],
name='peptide_right_pad')
model_inputs['peptide_left_pad'] = Input(
shape=empty_x_dict['peptide_left_pad'].shape[1:],
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
name='peptide_left_pad')
if 'n_flank' in empty_x_dict:
model_inputs['n_flank'] = Input(
shape=empty_x_dict['n_flank'].shape[1:],
dtype='float32',
name='n_flank')
if 'c_flank' in empty_x_dict:
model_inputs['c_flank'] = Input(
shape=empty_x_dict['c_flank'].shape[1:],
dtype='float32',
name='c_flank')
outputs_for_final_dense = []
for flank in ["n_flank", "c_flank"]:
include_flank = flank in model_inputs
if flank == "n_flank":
peptide_input = "peptide_right_pad"
concat_order = [flank, peptide_input]
noncleaved_peptide_extractor = lambda x: x[
:, (n_flank_length + 1):]
flanking_extractor = lambda x: x[
:, : n_flank_length
]
else:
assert flank == "c_flank"
peptide_input = "peptide_left_pad"
concat_order = [peptide_input, flank]
noncleaved_peptide_extractor = lambda x: x[
:, 0 : peptide_max_length - 1]
flanking_extractor = lambda x: x[
:, peptide_max_length :
]
cleavage_position_extractor = lambda x: x[:, peptide_max_length - 1]
if include_flank:
current_layer = Concatenate(
axis=1,
name="_".join(concat_order))([
model_inputs[item] for item in concat_order
])
else:
current_layer = model_inputs[peptide_input]
current_layer = keras.layers.Conv1D(
filters=convolutional_filters,
kernel_size=convolutional_kernel_size,
kernel_regularizer=keras.regularizers.l1_l2(
activation=convolutional_activation,
name="%s_conv" % flank)(current_layer)
if dropout_rate > 0:
current_layer = keras.layers.Dropout(
rate=dropout_rate,
noise_shape=(
None, 1, int(current_layer.get_shape()[-1])))(
current_layer)
convolutional_result = current_layer
for (i, size) in enumerate(
list(post_convolutional_dense_layer_sizes) + [1]):
current_layer = keras.layers.Conv1D(
name="%s_post_%d" % (flank, i),
kernel_regularizer=keras.regularizers.l1_l2(
*convolutional_kernel_l1_l2),
activation=convolutional_activation)(current_layer)
single_output_result = current_layer
# Single output at cleavage position
single_output_at_cleavage_position = keras.layers.Lambda(
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
outputs_for_final_dense.append(single_output_at_cleavage_position)
# Max of single-output at non-cleaved (peptide) positions.
non_cleaved_single_outputs = keras.layers.Lambda(
noncleaved_peptide_extractor, name="%s_noncleaved" % flank)(
single_output_result)
non_cleaved_pooled = keras.layers.pooling.GlobalMaxPooling1D(
name="%s_noncleaved_pooled" % flank)(non_cleaved_single_outputs)
# We flip it so that initializing the final dense layer weights to
# 1s is reasonable.
non_cleaved_pooled_flipped = keras.layers.Lambda(
lambda x: -x,
name="%s_noncleaved_pooled_flip" % flank)(non_cleaved_pooled)
outputs_for_final_dense.append(non_cleaved_pooled_flipped)
if include_flank and flanking_averages:
# Also include average pooled of flanking sequences
extracted_flank = keras.layers.Lambda(
flanking_extractor, name="%s_extracted" % flank)(
convolutional_result)
pooled_flank = keras.layers.pooling.GlobalAveragePooling1D(
name="%s_avg" % flank,
)(extracted_flank)
dense_flank = Dense(
1, activation="tanh", name="%s_avg_dense" % flank)(
pooled_flank)
outputs_for_final_dense.append(dense_flank)
if len(outputs_for_final_dense) == 1:
(current_layer,) = outputs_for_final_dense
else:
current_layer = Concatenate(name="final")(outputs_for_final_dense)
output = Dense(
1,
activation="sigmoid",
name="output",
kernel_initializer=keras.initializers.Ones(),
)(current_layer)
outputs=[output],
name="predictor")
return model
def __getstate__(self):
"""
serialize to a dict. Model weights are included. For pickle support.
Returns
-------
dict
"""
self.update_network_description()
result = dict(self.__dict__)
result['_network'] = None
return result
def __setstate__(self, state):
"""
Deserialize. For pickle support.
"""
self.__dict__.update(state)
def get_weights(self):
"""
Get the network weights
Returns
-------
list of numpy.array giving weights for each layer or None if there is no
network
"""
def get_config(self):
"""
serialize to a dict all attributes except model weights
Returns
-------
dict
"""
return result
@classmethod
def from_config(cls, config, weights=None):
"""
deserialize from a dict returned by get_config().
Parameters
----------
config : dict
weights : list of array, optional
Network weights to restore
weights_loader : callable, optional
Function to call (no arguments) to load weights when needed
Returns
-------
Class1CleavageNeuralNetwork
"""
config = dict(config)
instance = cls(**config.pop('hyperparameters'))
instance.__dict__.update(config)
instance.network_weights = weights
assert instance._network is None
return instance