Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
"""
Idea:
Fully convolutional network with softmax output. Let it take a 35mer:
- N flank [10 aa]
- peptide [7-15 aa]
- C flank [10 aa]
Train on monoallelic mass spec. Match positive examples (hits) to negatives
from the same sample by finding unobserved peptides with as close as possible
a match for predicted binding affinity.
In final layer, take max cleavage score over peptide and the individual score
for the position right before the peptide terminus. Compute the ratio of these.
Or actually reverse of that. Hits get label 1, decoys get 0.
For a hit with sequence
NNNNNNNNNNPPPPPPPPPCCCCCCCCCC
penalize on:
[----------1000000000---------]
For a decoy with same sequence, penalize it on:
[----------0-----------------]
Train separate models for N- and C-terminal cleavage.
Issue:
- it'll learn mass spec biases in the peptide
Possible fix:
- Also provide the amino acid counts of the peptide as auxiliary inputs. After
training, set the cysteine value to 0.
Architecture:
architecture (for N terminal: for C terminal reverse the sequences):
input of length S=25 [flank + left-aligned peptide]
*** conv [vector of length S] ***
*** [more convs and local pools] ***
*** output [vector of length S] ***
*** extract: position 10 and max of peptide positions [2-vector]
*** concat:[position 10, max of peptide positions, number of Alananine, ..., number of Y in peptide]
*** single dense node, softmax activation [1-vector]
Train on monoallelic.
Decoys are length-matched to hits and sampled from the same transcripts, selecting
an unobeserved peptide with as close as possible the same predicted affinity.
*** + repeat vector for each position
*** conv ***
*** conv ***
*** ... conv n ***
*** repeat vector for each position
*** dense per-position
*** output [35-vector]
*** extract: position 10 and max of peptide positions [2-vector]
*** dense
*** output
IDEA 2:
- Two inputs: N-flank + peptide (left aligned), peptide (right alighted + C-flank
- Bunch of convolutions
- Global max pooling
- Dense
"""
from __future__ import print_function
import time
import collections
from six import string_types
import numpy
import pandas
import mhcnames
import hashlib
from .hyperparameters import HyperparameterDefaults
from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
from .regression_target import from_ic50, to_ic50
from .random_negative_peptides import RandomNegativePeptides
from .allele_encoding import MultipleAlleleEncoding, AlleleEncoding
from .auxiliary_input import AuxiliaryInputEncoder
from .batch_generator import BatchGenerator
from .custom_loss import (
MSEWithInequalities,
TransformPredictionsLossWrapper,
MultiallelicMassSpecLoss)
class Class1CleavageNeuralNetwork(object):
network_hyperparameter_defaults = HyperparameterDefaults(
amino_acid_encoding="BLOSUM62",
peptide_max_length=15,
n_flank_length=10,
c_flank_length=10,
vector_encoding_name="BLOSUM62",
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
validation_split=0.1,
early_stopping=True
)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
patience=5,
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
optimizer="rmsprop",
learning_rate=None,
)
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
auxiliary_input_hyperparameter_defaults = HyperparameterDefaults(
)
"""
Allele feature hyperparameters.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
compile_hyperparameter_defaults).extend(
auxiliary_input_hyperparameter_defaults)
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
self.network = None
self.fit_info = []
def fit(
self,
peptides,
n_flanks,
c_flanks,
targets,
sample_weights=None,
shuffle_permutation=None,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
"""
Parameters
----------
peptides
n_flanks
c_flanks
targets : array of {0, 1} indicating hits (1) or decoys (0)
Returns
-------
"""
import keras.backend as K
peptides = EncodableSequences.create(peptides)
n_flanks = EncodableSequences.create(n_flanks)
c_flanks = EncodableSequences.create(c_flanks)
x_list = self.peptides_and_flanking_to_network_input(
peptides, n_flanks, c_flanks)
# Shuffle
if shuffle_permutation is None:
shuffle_permutation = numpy.random.permutation(len(targets))
targets = targets[shuffle_permutation]
assert numpy.isnan(targets).sum() == 0, targets
if sample_weights is not None:
sample_weights = numpy.array(sample_weights)[shuffle_permutation]
x_list = [x[shuffle_permutation] for x in x_list]
fit_info = collections.defaultdict(list)
if self.network is None:
self.network = self.make_network(
**self.network_hyperparameter_defaults.subselect(
self.hyperparameters))
if verbose > 0:
self.network.summary()
self.network.compile(
loss="binary_crossentropy",
optimizer=self.hyperparameters['optimizer'])
last_progress_print = None
min_val_loss_iteration = None
min_val_loss = None
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
epoch_start = time.time()
fit_history = self.network.fit(
x_list,
targets,
validation_split=self.hyperparameters['validation_split'],
shuffle=True,
epochs=i + 1,
sample_weight=sample_weights,
initial_epoch=i,
verbose=verbose)
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if self.hyperparameters['validation_split']:
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss - self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
fit_info["num_points"] = len(peptides)
self.fit_info.append(dict(fit_info))
def predict(
self,
peptides,
n_flanks,
c_flanks,
batch_size=DEFAULT_PREDICT_BATCH_SIZE):
"""
"""
x_list = self.peptides_and_flanking_to_network_input(
peptides, n_flanks, c_flanks)
raw_predictions = self.network.predict(
x_list, batch_size=batch_size)
predictions = numpy.array(raw_predictions, dtype="float64")
return predictions
def peptides_and_flanking_to_network_input(self, peptides, n_flanks, c_flanks):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
peptides = EncodableSequences.create(peptides)
n_flanks = EncodableSequences.create(n_flanks)
c_flanks = EncodableSequences.create(c_flanks)
peptide_encoded1 = peptides.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['peptide_max_length'],
alignment_method='right_pad')
peptide_encoded2 = peptides.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['peptide_max_length'],
alignment_method='left_pad')
n_flanks_encoded = n_flanks.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['n_flank_length'],
alignment_method='right_pad')
c_flanks_encoded = c_flanks.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['c_flank_length'],
alignment_method='left_pad')
return [
peptide_encoded1,
peptide_encoded2,
n_flanks_encoded,
c_flanks_encoded
]
def make_network(
self,
amino_acid_encoding,
peptide_max_length,
n_flank_length,
c_flank_length,
vector_encoding_name):
"""
Helper function to make a keras network
"""
# We import keras here to avoid tensorflow debug output, etc. unless we
# are actually about to use Keras.
from keras.layers import Input
import keras.layers
import keras.layers.pooling
from keras.layers.core import Dense, Flatten, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from keras.layers.merge import Concatenate
import keras.backend as K
(peptides_empty, _, n_flanks_empty, c_flanks_empty) = (
self.peptides_and_flanking_to_network_input(
peptides=[],
n_flanks=[],
c_flanks=[]))
print((peptides_empty, _, n_flanks_empty, c_flanks_empty))
#import ipdb ; ipdb.set_trace()
peptide_input1 = Input(
shape=peptides_empty.shape[1:],
dtype='float32',
name='peptide1')
peptide_input2 = Input(
shape=peptides_empty.shape[1:],
dtype='float32',
name='peptide2')
n_flank_input = Input(
shape=n_flanks_empty.shape[1:],
dtype='float32',
name='n_flank')
c_flank_input = Input(
shape=c_flanks_empty.shape[1:],
dtype='float32',
name='c_flank')
inputs = [peptide_input1, peptide_input2, n_flank_input, c_flank_input]
sub_networks = []
for input_pair in [(n_flank_input, peptide_input1), (peptide_input2, c_flank_input)]:
# need to stack them together
current_layer = Concatenate(axis=1)(list(input_pair))
for i in range(1):
current_layer = keras.layers.Conv1D(
filters=int(16 / 2**i),
kernel_size=8,
activation="tanh")(current_layer)
#current_layer = keras.layers.pooling.MaxPooling1D(
# pool_size=4)(current_layer)
#current_layer = Flatten()(current_layer)
sub_networks.append(current_layer)
extracted_layers = []
extracted_layers.append(
keras.layers.Lambda(lambda x: x[:, n_flank_length])(sub_networks[0]))
peptide_n_cleavage = keras.layers.Lambda(
lambda x: x[
:, (n_flank_length + 1) :
])(sub_networks[0])
extracted_layers.append(
keras.layers.pooling.GlobalMaxPooling1D()(peptide_n_cleavage))
extracted_layers.append(
keras.layers.Lambda(
lambda x: x[:, peptide_max_length])(sub_networks[1]))
peptide_c_cleavage = keras.layers.Lambda(
lambda x: x[
:, 0 : peptide_max_length
])(sub_networks[1])
extracted_layers.append(
keras.layers.pooling.GlobalMaxPooling1D()(peptide_c_cleavage))
current_layer = Concatenate()(extracted_layers)
output = Dense(
1,
activation="sigmoid",
name="output")(current_layer)
model = keras.models.Model(
inputs=inputs,
outputs=[output],
name="predictor")
return model