Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
Idea:
Fully convolutional network with softmax output. Let it take a 35mer:
- N flank [10 aa]
- peptide [7-15 aa]
- C flank [10 aa]
Train on monoallelic mass spec. Match positive examples (hits) to negatives
from the same sample by finding unobserved peptides with as close as possible
a match for predicted binding affinity.
In final layer, take max cleavage score over peptide and the individual score
for the position right before the peptide terminus. Compute the ratio of these.
Or actually reverse of that. Hits get label 1, decoys get 0.
For a hit with sequence
NNNNNNNNNNPPPPPPPPPCCCCCCCCCC
penalize on:
[----------1000000000---------]
For a decoy with same sequence, penalize it on:
[----------0-----------------]
Train separate models for N- and C-terminal cleavage.
Issue:
- it'll learn mass spec biases in the peptide
Possible fix:
- Also provide the amino acid counts of the peptide as auxiliary inputs. After
training, set the cysteine value to 0.
Architecture:
architecture (for N terminal: for C terminal reverse the sequences):
input of length S=25 [flank + left-aligned peptide]
*** conv [vector of length S] ***
*** [more convs and local pools] ***
*** output [vector of length S] ***
*** extract: position 10 and max of peptide positions [2-vector]
*** concat:[position 10, max of peptide positions, number of Alananine, ..., number of Y in peptide]
*** single dense node, softmax activation [1-vector]
Train on monoallelic.
Decoys are length-matched to hits and sampled from the same transcripts, selecting
an unobeserved peptide with as close as possible the same predicted affinity.
*** + repeat vector for each position
*** conv ***
*** conv ***
*** ... conv n ***
*** repeat vector for each position
*** dense per-position
*** output [35-vector]
*** extract: position 10 and max of peptide positions [2-vector]
*** dense
*** output
IDEA 2:
- Two inputs: N-flank + peptide (left aligned), peptide (right alighted + C-flank
- Bunch of convolutions
- Global max pooling
- Dense
"""
from __future__ import print_function
import time
import collections
import numpy
from .hyperparameters import HyperparameterDefaults
from .class1_neural_network import DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
class Class1CleavageNeuralNetwork(object):
network_hyperparameter_defaults = HyperparameterDefaults(
amino_acid_encoding="BLOSUM62",
peptide_max_length=15,
n_flank_length=10,
c_flank_length=10,
vector_encoding_name="BLOSUM62",
convolutional_filters=16,
convolutional_kernel_size=8,
convolutional_activation="relu",
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
validation_split=0.1,
early_stopping=True,
minibatch_size=256,
)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
learning_rate=None,
)
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
auxiliary_input_hyperparameter_defaults = HyperparameterDefaults(
)
"""
Allele feature hyperparameters.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
compile_hyperparameter_defaults).extend(
auxiliary_input_hyperparameter_defaults)
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
self.network = None
self.fit_info = []
def fit(
self,
peptides,
n_flanks,
c_flanks,
targets,
sample_weights=None,
shuffle_permutation=None,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
"""
Parameters
----------
peptides
n_flanks
c_flanks
targets : array of {0, 1} indicating hits (1) or decoys (0)
Returns
-------
"""
import keras.backend as K
peptides = EncodableSequences.create(peptides)
n_flanks = EncodableSequences.create(n_flanks)
c_flanks = EncodableSequences.create(c_flanks)
peptides, n_flanks, c_flanks)
# Shuffle
if shuffle_permutation is None:
shuffle_permutation = numpy.random.permutation(len(targets))
targets = targets[shuffle_permutation]
assert numpy.isnan(targets).sum() == 0, targets
if sample_weights is not None:
sample_weights = numpy.array(sample_weights)[shuffle_permutation]
for key in list(x_dict):
x_dict[key] = x_dict[key][shuffle_permutation]
fit_info = collections.defaultdict(list)
if self.network is None:
self.network = self.make_network(
**self.network_hyperparameter_defaults.subselect(
self.hyperparameters))
if verbose > 0:
self.network.summary()
self.network.compile(
loss="binary_crossentropy",
optimizer=self.hyperparameters['optimizer'])
last_progress_print = None
min_val_loss_iteration = None
min_val_loss = None
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
epoch_start = time.time()
fit_history = self.network.fit(
targets,
validation_split=self.hyperparameters['validation_split'],
batch_size=self.hyperparameters['minibatch_size'],
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
epochs=i + 1,
sample_weight=sample_weights,
initial_epoch=i,
verbose=verbose)
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if self.hyperparameters['validation_split']:
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss - self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
fit_info["num_points"] = len(peptides)
self.fit_info.append(dict(fit_info))
if verbose:
print(
"Output weights",
*numpy.array(
self.network.get_layer("output").get_weights()).flatten())
def predict(
self,
peptides,
n_flanks,
c_flanks,
batch_size=DEFAULT_PREDICT_BATCH_SIZE):
"""
"""
x_list = self.peptides_and_flanking_to_network_input(
peptides, n_flanks, c_flanks)
raw_predictions = self.network.predict(
x_list, batch_size=batch_size)
predictions = numpy.array(raw_predictions, dtype="float64")[:,0]
return predictions
def peptides_and_flanking_to_network_input(self, peptides, n_flanks, c_flanks):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
peptides = EncodableSequences.create(peptides)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
result = {}
result['peptide_right_pad'] = (
peptides.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['peptide_max_length'],
alignment_method='right_pad'))
result['peptide_left_pad'] = (
peptides.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['peptide_max_length'],
alignment_method='left_pad'))
if self.hyperparameters['n_flank_length'] > 0:
n_flanks = EncodableSequences.create(n_flanks)
result['n_flank'] = (
n_flanks.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['n_flank_length'],
alignment_method='left_pad',
trim=True,
allow_unsupported_amino_acids=True))
if self.hyperparameters['c_flank_length'] > 0:
c_flanks = EncodableSequences.create(c_flanks)
result['c_flank'] = (
c_flanks.variable_length_to_fixed_length_vector_encoding(
vector_encoding_name=self.hyperparameters['vector_encoding_name'],
max_length=self.hyperparameters['c_flank_length'],
alignment_method='right_pad',
trim=True,
allow_unsupported_amino_acids=True))
return result
def make_network(
self,
amino_acid_encoding,
peptide_max_length,
n_flank_length,
c_flank_length,
convolutional_filters,
convolutional_kernel_size,
convolutional_activation,
convolutional_kernel_l1_l2,
dropout_rate,
post_convolutional_dense_layer_sizes):
"""
Helper function to make a keras network
"""
# We import keras here to avoid tensorflow debug output, etc. unless we
# are actually about to use Keras.
from keras.layers import Input
import keras.layers.pooling
from keras.layers.core import Dense, Flatten, Dropout
from keras.layers.merge import Concatenate
empty_x_dict = self.peptides_and_flanking_to_network_input(
peptides=[], n_flanks=[], c_flanks=[])
model_inputs['peptide_right_pad'] = Input(
shape=empty_x_dict['peptide_right_pad'].shape[1:],
name='peptide_right_pad')
model_inputs['peptide_left_pad'] = Input(
shape=empty_x_dict['peptide_left_pad'].shape[1:],
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
name='peptide_left_pad')
if 'n_flank' in empty_x_dict:
model_inputs['n_flank'] = Input(
shape=empty_x_dict['n_flank'].shape[1:],
dtype='float32',
name='n_flank')
if 'c_flank' in empty_x_dict:
model_inputs['c_flank'] = Input(
shape=empty_x_dict['c_flank'].shape[1:],
dtype='float32',
name='c_flank')
outputs_for_final_dense = []
for flank in ["n_flank", "c_flank"]:
include_flank = flank in model_inputs
if flank == "n_flank":
peptide_input = "peptide_right_pad"
concat_order = [flank, peptide_input]
cleavage_position = n_flank_length
noncleaved_peptide_extractor = lambda x: x[
:, (n_flank_length + 1):]
flanking_extractor = lambda x: x[
:, : n_flank_length
]
else:
assert flank == "c_flank"
peptide_input = "peptide_left_pad"
concat_order = [peptide_input, flank]
cleavage_position = peptide_max_length - 1
noncleaved_peptide_extractor = lambda x: x[
:, 0 : peptide_max_length - 1]
flanking_extractor = lambda x: x[
:, peptide_max_length :
]
if include_flank:
current_layer = Concatenate(
axis=1,
name="_".join(concat_order))([
model_inputs[item] for item in concat_order
])
else:
current_layer = model_inputs[peptide_input]
current_layer = keras.layers.Conv1D(
filters=convolutional_filters,
kernel_size=convolutional_kernel_size,
kernel_regularizer=keras.regularizers.l1_l2(
activation=convolutional_activation,
name="%s_conv" % flank)(current_layer)
if dropout_rate > 0:
current_layer = keras.layers.Dropout(
rate=dropout_rate,
noise_shape=(
None, 1, int(current_layer.get_shape()[-1])))(
current_layer)
convolutional_result = current_layer
for (i, size) in enumerate(
list(post_convolutional_dense_layer_sizes) + [1]):
current_layer = keras.layers.Conv1D(
name="%s_post_%d" % (flank, i),
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
kernel_regularizer=keras.regularizers.l1_l2(
*convolutional_kernel_l1_l2),
activation=convolutional_activation)(current_layer)
single_output_result = current_layer
# Single output at cleavage position
single_output_at_cleavage_position = keras.layers.Lambda(
lambda x: x[:, cleavage_position])(single_output_result)
outputs_for_final_dense.append(single_output_at_cleavage_position)
# Max of single-output at non-cleaved (peptide) positions.
non_cleaved_single_outputs = keras.layers.Lambda(
noncleaved_peptide_extractor, name="%s_noncleaved" % flank)(
single_output_result)
non_cleaved_pooled = keras.layers.pooling.GlobalMaxPooling1D(
name="%s_noncleaved_pooled" % flank)(non_cleaved_single_outputs)
# We flip it so that initializing the final dense layer weights to
# 1s is reasonable.
non_cleaved_pooled_flipped = keras.layers.Lambda(
lambda x: -x,
name="%s_noncleaved_pooled_flip" % flank)(non_cleaved_pooled)
outputs_for_final_dense.append(non_cleaved_pooled_flipped)
if include_flank and flanking_averages:
# Also include average pooled of flanking sequences
extracted_flank = keras.layers.Lambda(
flanking_extractor, name="%s_extracted" % flank)(
convolutional_result)
pooled_flank = keras.layers.pooling.GlobalAveragePooling1D(
name="%s_avg" % flank,
)(extracted_flank)
dense_flank = Dense(
1, activation="tanh", name="%s_avg_dense" % flank)(
pooled_flank)
outputs_for_final_dense.append(dense_flank)
if len(outputs_for_final_dense) == 1:
(current_layer,) = outputs_for_final_dense
else:
current_layer = Concatenate(name="final")(outputs_for_final_dense)
output = Dense(
1,
activation="sigmoid",
name="output",
kernel_initializer=keras.initializers.Ones(),
)(current_layer)
outputs=[output],
name="predictor")
return model
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def __getstate__(self):
"""
serialize to a dict. Model weights are included. For pickle support.
Returns
-------
dict
"""
result = self.get_config()
result['network_weights'] = self.get_weights()
return result
def __setstate__(self, state):
"""
Deserialize. For pickle support.
"""
network_json = state.pop("network_json")
network_weights = state.pop("network_weights")
self.__dict__.update(state)
if network_json is not None:
import keras.models
self.network = keras.models.model_from_json(network_json)
if network_weights is not None:
self.network.set_weights(network_weights)
def get_weights(self):
"""
Get the network weights
Returns
-------
list of numpy.array giving weights for each layer or None if there is no
network
"""
if self.network is None:
return None
return self.network.get_weights()
def get_config(self):
"""
serialize to a dict all attributes except model weights
Returns
-------
dict
"""
result = dict(self.__dict__)
del result['network']
result['network_json'] = None
if self.network:
result['network_json'] = self.network.to_json()
return result
@classmethod
def from_config(cls, config, weights=None):
"""
deserialize from a dict returned by get_config().
Parameters
----------
config : dict
weights : list of array, optional
Network weights to restore
weights_loader : callable, optional
Function to call (no arguments) to load weights when needed
Returns
-------
Class1CleavageNeuralNetwork
"""
config = dict(config)
instance = cls(**config.pop('hyperparameters'))
network_json = config.pop('network_json')
instance.__dict__.update(config)
assert instance.network is None
if network_json is not None:
import keras.models
instance.network = keras.models.model_from_json(network_json)
if weights is not None:
instance.network.set_weights(weights)
return instance