Newer
Older
"""
Idea:
- take an allele where MS vs. no-MS trained predictors are very different. One
possiblility is DLA-88*501:01 but human would be better
- generate synethetic multi-allele MS by combining single-allele MS for differnet
alleles, including the selected allele
- train presentation predictor based on the no-ms pan-allele models on theis
synthetic dataset
- see if the pan-allele predictor learns the "correct" motif for the selected
allele, i.e. updates to become more similar to the with-ms pan allele predictor.
"""
import logging
logging.getLogger('tensorflow').disabled = True
logging.getLogger('matplotlib').disabled = True
import pandas
import argparse
import sys
from numpy.testing import assert_, assert_equal, assert_allclose, assert_array_equal
import numpy
from random import shuffle
from mhcflurry.class1_presentation_neural_network import Class1PresentationNeuralNetwork
from mhcflurry.class1_presentation_predictor import Class1PresentationPredictor
from mhcflurry.common import random_peptides, positional_frequency_matrix
from mhcflurry.testing_utils import cleanup, startup
from mhcflurry.amino_acid import COMMON_AMINO_ACIDS
from mhcflurry.custom_loss import MultiallelicMassSpecLoss
COMMON_AMINO_ACIDS = sorted(COMMON_AMINO_ACIDS)
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
def data_path(name):
'''
Return the absolute path to a file in the test/data directory.
The name specified should be relative to test/data.
'''
return os.path.join(os.path.dirname(__file__), "data", name)
def setup():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
startup()
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.no_mass_spec"),
optimization_level=0,
max_models=1)
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.with_mass_spec/frequency_matrices.csv.bz2"))
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.no_mass_spec/frequency_matrices.csv.bz2"))
def teardown():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
cleanup()
def test_basic():
affinity_predictor = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
models = []
for affinity_network in affinity_predictor.class1_pan_allele_models:
presentation_network = Class1PresentationNeuralNetwork()
presentation_network.load_from_class1_neural_network(affinity_network)
models.append(presentation_network)
predictor = Class1PresentationPredictor(
models=models,
allele_to_sequence=affinity_predictor.allele_to_sequence)
alleles = ["HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:02"]
df = pandas.DataFrame(index=numpy.unique(random_peptides(1000, length=9)))
for allele in alleles:
df[allele] = affinity_predictor.predict(
df.index.values, allele=allele)
df["tightest_affinity"] = df.min(1)
df["tightest_allele"] = df.idxmin(1)
df2 = predictor.predict_to_dataframe(
peptides=df.index.values,
alleles=alleles)
merged_df = pandas.merge(
df, df2.set_index("peptide"), left_index=True, right_index=True)
#import ipdb ; ipdb.set_trace()
assert_allclose(
merged_df["tightest_affinity"], merged_df["affinity"], rtol=1e-5)
assert_allclose(
merged_df["tightest_affinity"], to_ic50(merged_df["score"]), rtol=1e-5)
assert_array_equal(merged_df["tightest_allele"], merged_df["allele"])
models_dir = tempfile.mkdtemp("_models")
print(models_dir)
predictor.save(models_dir)
predictor2 = Class1PresentationPredictor.load(models_dir)
df3 = predictor2.predict_to_dataframe(
peptides=df.index.values,
alleles=alleles)
assert_array_equal(df2.values, df3.values)
def scramble_peptide(peptide):
lst = list(peptide)
shuffle(lst)
return "".join(lst)
def evaluate_loss(loss, y_true, y_pred):
import keras.backend as K
y_true = numpy.array(y_true)
y_pred = numpy.array(y_pred)
if y_pred.ndim == 1:
y_pred = y_pred.reshape((len(y_pred), 1))
if y_true.ndim == 1:
y_true = y_true.reshape((len(y_true), 1))
if K.backend() == "tensorflow":
session = K.get_session()
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval(session=session)
elif K.backend() == "theano":
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval()
else:
raise ValueError("Unsupported backend: %s" % K.backend())
print("delta", delta)
# Hit labels
y_true = [
1.0,
0.0,
1.0,
1.0,
0.0
]
y_true = numpy.array(y_true)
y_pred = [
[0.3, 0.7, 0.5],
[0.2, 0.4, 0.6],
[0.1, 0.5, 0.3],
]
y_pred = numpy.array(y_pred)
# reference implementation 1
def smooth_max(x, alpha):
x = numpy.array(x)
alpha = numpy.array([alpha])
return (x * numpy.exp(x * alpha)).sum() / (
numpy.exp(x * alpha)).sum()
contributions = []
for i in range(len(y_true)):
if y_true[i] == 1.0:
for j in range(len(y_true)):
if y_true[j] == 0.0:
tightest_i = max(y_pred[i])
contribution = sum(
max(0, y_pred[j, k] - tightest_i + delta)**2
for k in range(y_pred.shape[1])
)
contributions.append(contribution)
contributions = numpy.array(contributions)
# reference implementation 2: numpy
pos = numpy.array([
max(y_pred[i])
for i in range(len(y_pred))
if y_true[i] == 1.0
])
numpy.maximum(0, neg.reshape((-1, 1)) - pos + delta)**2).sum() / (
len(pos) * len(neg))
yield numpy.testing.assert_almost_equal, expected1, expected2, 4
computed = evaluate_loss(
MultiallelicMassSpecLoss(delta=delta).loss,
y_true,
y_pred.reshape(y_pred.shape + (1,)))
yield numpy.testing.assert_almost_equal, computed, expected1, 4
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
AA_DIST = pandas.Series(
dict((line.split()[0], float(line.split()[1])) for line in """
A 0.071732
E 0.060102
N 0.034679
D 0.039601
T 0.055313
L 0.115337
V 0.070498
S 0.071882
Q 0.040436
F 0.050178
G 0.053176
C 0.005429
H 0.025487
I 0.056312
W 0.013593
K 0.057832
M 0.021079
Y 0.043372
R 0.060330
P 0.053632
""".strip().split("\n")))
print(AA_DIST)
def make_random_peptides(num_peptides_per_length=10000, lengths=[9]):
peptides = []
for length in lengths:
peptides.extend(
random_peptides
(num_peptides_per_length, length=length, distribution=AA_DIST))
return EncodableSequences.create(peptides)
def make_motif(allele, peptides, frac=0.01):
peptides = EncodableSequences.create(peptides)
predictions = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.predict(
peptides=peptides,
allele=allele,
)
random_predictions_df = pandas.DataFrame({"peptide": peptides.sequences})
random_predictions_df["prediction"] = predictions
random_predictions_df = random_predictions_df.sort_values(
"prediction", ascending=True)
top = random_predictions_df.iloc[:int(len(random_predictions_df) * frac)]
matrix = positional_frequency_matrix(top.peptide.values)
return matrix
ms_df = pandas.read_csv(
get_path("data_mass_spec_annotated", "annotated_ms.csv.bz2"))
ms_df = ms_df.loc[
(ms_df.mhc_class == "I") & (~ms_df.protein_ensembl.isnull())].copy()
sample_table = ms_df.drop_duplicates(
"sample_id").set_index("sample_id").loc[ms_df.sample_id.unique()]
grouped = ms_df.groupby("sample_id").nunique()
for col in sample_table.columns:
if (grouped[col] > 1).any():
del sample_table[col]
sample_table["alleles"] = sample_table.hla.str.split()
ms_df.sample_id == "RA957"
].drop_duplicates("peptide")[["peptide", "sample_id"]].reset_index(drop=True)
multi_train_hit_df["label"] = 1.0
multi_train_decoy_df = ms_df.loc[
(ms_df.sample_id == "CD165") &
(~ms_df.peptide.isin(multi_train_hit_df.peptide.unique()))
].drop_duplicates("peptide")[["peptide"]]
(multi_train_decoy_df["sample_id"],) = multi_train_hit_df.sample_id.unique()
multi_train_decoy_df["label"] = 0.0
multi_train_df = pandas.concat(
[multi_train_hit_df, multi_train_decoy_df], ignore_index=True)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
multi_train_df["is_affinity"] = False
multi_train_alleles = set()
for alleles in sample_table.loc[multi_train_df.sample_id.unique()].alleles:
multi_train_alleles.update(alleles)
multi_train_alleles = sorted(multi_train_alleles)
pan_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
pan_sub_train_df = pan_train_df.loc[
pan_train_df.allele.isin(multi_train_alleles),
["peptide", "allele", "measurement_inequality", "measurement_value"]
]
pan_sub_train_df["label"] = pan_sub_train_df["measurement_value"]
del pan_sub_train_df["measurement_value"]
pan_sub_train_df["is_affinity"] = True
pan_predictor = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.with_mass_spec"),
optimization_level=0,
max_models=1)
allele_encoding = MultipleAlleleEncoding(
experiment_names=multi_train_df.sample_id.values,
experiment_to_allele_list=sample_table.alleles.to_dict(),
max_alleles_per_experiment=sample_table.alleles.str.len().max(),
allele_to_sequence=pan_predictor.allele_to_sequence,
)
allele_encoding.append_alleles(pan_sub_train_df.allele.values)
allele_encoding = allele_encoding.compact()
combined_train_df = pandas.concat([multi_train_df, pan_sub_train_df])
output="affinities",
peptides=combined_train_df.peptide.values,
(model,) = pan_predictor.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(combined_train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))[:,0]
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in multi_train_alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
print("Pre fitting:")
update_motifs()
print("Fitting...")
peptides=combined_train_df.peptide.values,
labels=combined_train_df.label.values,
allele_encoding=allele_encoding,
affinities_mask=combined_train_df.is_affinity.values,
inequalities=combined_train_df.measurement_inequality.values,
progress_callback=update_motifs,
)
def Xtest_synthetic_allele_refinement_with_affinity_data(max_epochs=10):
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
mms_train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
mms_train_df["label"] = mms_train_df.hit
mms_train_df["is_affinity"] = False
affinity_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
affinity_train_df = affinity_train_df.loc[
affinity_train_df.allele.isin(alleles),
["peptide", "allele", "measurement_inequality", "measurement_value"]]
affinity_train_df["label"] = affinity_train_df["measurement_value"]
del affinity_train_df["measurement_value"]
affinity_train_df["is_affinity"] = True
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC,
auxiliary_input_features=["gene"],
max_ensemble_size=1,
max_epochs=max_epochs,
learning_rate=0.0001,
patience=5,
min_delta=0.0,
random_negative_rate=1.0,
random_negative_constant=25)
mms_allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(mms_train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
)
allele_encoding = copy.deepcopy(mms_allele_encoding)
allele_encoding.append_alleles(affinity_train_df.allele.values)
allele_encoding = allele_encoding.compact()
train_df = pandas.concat(
[mms_train_df, affinity_train_df], ignore_index=True, sort=False)
pre_predictions = from_ic50(
predictor.predict(
output="affinities_matrix",
peptides=mms_train_df.peptide.values,
alleles=mms_allele_encoding))
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(mms_train_df.peptide.values, len(alleles)),
allele_encoding=mms_allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
mms_train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(mms_train_df.hit.values, mms_train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
metric_rows = []
def progress():
predictor.predict(
output="all",
peptides=mms_train_df.peptide.values,
alleles=mms_allele_encoding))
affinities_predictions = from_ic50(affinities_predictions)
for (kind, predictions) in [
("affinities", affinities_predictions),
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
mms_train_df["max_prediction"] = predictions.max(1)
mms_train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()
].values
print(kind)
print(predictions)
mean_predictions_for_hit = mms_train_df.loc[
mms_train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = mms_train_df.loc[
mms_train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
mms_train_df.loc[mms_train_df.hit == 1.0].predicted_allele ==
mms_train_df.loc[mms_train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(mms_train_df.hit.values, mms_train_df.max_prediction.values)
print(kind, "Mean prediction for hit", mean_predictions_for_hit)
print(kind, "Mean prediction for decoy", mean_predictions_for_decoy)
print(kind, "Correct predicted allele fraction", correct_allele_fraction)
print(kind, "AUC", auc)
metric_rows.append((
kind,
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.label.values,
inequalities=train_df.measurement_inequality.values,
affinities_mask=train_df.is_affinity.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
]
)
metrics = pandas.DataFrame(
metric_rows,
columns=[
"output",
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
return (predictor, predictions, metrics, motifs)
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
min_delta=0.0,
random_negative_rate=0.0,
random_negative_constant=0)
allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
).compact()
pre_predictions = from_ic50(
predictor.predict(
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(train_df.hit.values, train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
alleles=allele_encoding))
affinities_predictions = from_ic50(affinities_predictions)
for (kind, predictions) in [
("affinities", affinities_predictions),
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
train_df["max_prediction"] = predictions.max(1)
train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()
].values
print(kind)
print(predictions)
mean_predictions_for_hit = train_df.loc[
train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = train_df.loc[
train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
train_df.loc[train_df.hit == 1.0].predicted_allele ==
train_df.loc[train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(train_df.hit.values, train_df.max_prediction.values)
print(kind, "Mean prediction for hit", mean_predictions_for_hit)
print(kind, "Mean prediction for decoy", mean_predictions_for_decoy)
print(kind, "Correct predicted allele fraction", correct_allele_fraction)
print(kind, "AUC", auc)
metric_rows.append((
kind,
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.hit.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
multi_train_df = pandas.read_csv(
data_path("multiallelic_ms.benchmark1.csv.bz2"))
multi_train_df["label"] = multi_train_df.hit
multi_train_df["is_affinity"] = False
sample_table = multi_train_df.loc[
multi_train_df.label == True
].drop_duplicates("sample_id").set_index("sample_id").loc[
multi_train_df.sample_id.unique()
]
grouped = multi_train_df.groupby("sample_id").nunique()
for col in sample_table.columns:
if (grouped[col] > 1).any():
del sample_table[col]
sample_table["alleles"] = sample_table.hla.str.split()
pan_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
pan_sub_train_df = pan_train_df
pan_sub_train_df["label"] = pan_sub_train_df["measurement_value"]
del pan_sub_train_df["measurement_value"]
pan_sub_train_df["is_affinity"] = True
pan_sub_train_df = pan_sub_train_df.sample(frac=sample_rate)
multi_train_df = multi_train_df.sample(frac=sample_rate)
pan_predictor = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.with_mass_spec"),
optimization_level=0,
max_models=1)
allele_encoding = MultipleAlleleEncoding(
experiment_names=multi_train_df.sample_id.values,
experiment_to_allele_list=sample_table.alleles.to_dict(),
max_alleles_per_experiment=sample_table.alleles.str.len().max(),
allele_to_sequence=pan_predictor.allele_to_sequence,
)
allele_encoding.append_alleles(pan_sub_train_df.allele.values)
allele_encoding = allele_encoding.compact()
combined_train_df = pandas.concat(
[multi_train_df, pan_sub_train_df], ignore_index=True, sort=True)
pan_predictor,
auxiliary_input_features=[],
max_ensemble_size=1,
max_epochs=0,
batch_generator_batch_size=128,
learning_rate=0.0001,
patience=5,
min_delta=0.0,
random_negative_rate=1.0)
peptides=combined_train_df.peptide.values,
labels=combined_train_df.label.values,
allele_encoding=allele_encoding,
affinities_mask=combined_train_df.is_affinity.values,
inequalities=combined_train_df.measurement_inequality.values,
)
batch_generator = fit_results['batch_generator']
train_batch_plan = batch_generator.train_batch_plan
assert_greater(len(train_batch_plan.equivalence_class_labels), 100)
assert_less(len(train_batch_plan.equivalence_class_labels), 1000)
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--out-metrics-csv",
default=None,
help="Metrics output")
parser.add_argument(
"--out-motifs-pickle",
parser.add_argument(
"--max-epochs",
default=100,
type=int,
help="Max epochs")
if __name__ == '__main__':
# If run directly from python, leave the user in a shell to explore results.
setup()
args = parser.parse_args(sys.argv[1:])
(predictor, predictions, metrics, motifs) = (
test_synthetic_allele_refinement(max_epochs=args.max_epochs))
if args.out_metrics_csv:
metrics.to_csv(args.out_metrics_csv)
if args.out_motifs_pickle:
motifs.to_pickle(args.out_motifs_pickle)
# Leave in ipython
import ipdb # pylint: disable=import-error
ipdb.set_trace()