Newer
Older
"""
Idea:
- take an allele where MS vs. no-MS trained predictors are very different. One
possiblility is DLA-88*501:01 but human would be better
- generate synethetic multi-allele MS by combining single-allele MS for differnet
alleles, including the selected allele
- train presentation predictor based on the no-ms pan-allele models on theis
synthetic dataset
- see if the pan-allele predictor learns the "correct" motif for the selected
allele, i.e. updates to become more similar to the with-ms pan allele predictor.
"""
import logging
logging.getLogger('tensorflow').disabled = True
logging.getLogger('matplotlib').disabled = True
import pandas
import argparse
import sys
from numpy.testing import assert_, assert_equal, assert_allclose, assert_array_equal
import numpy
from random import shuffle
from mhcflurry.class1_presentation_neural_network import Class1PresentationNeuralNetwork
from mhcflurry.class1_presentation_predictor import Class1PresentationPredictor
from mhcflurry.common import random_peptides, positional_frequency_matrix
from mhcflurry.testing_utils import cleanup, startup
from mhcflurry.amino_acid import COMMON_AMINO_ACIDS
from mhcflurry.custom_loss import MultiallelicMassSpecLoss
COMMON_AMINO_ACIDS = sorted(COMMON_AMINO_ACIDS)
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
def data_path(name):
'''
Return the absolute path to a file in the test/data directory.
The name specified should be relative to test/data.
'''
return os.path.join(os.path.dirname(__file__), "data", name)
def setup():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
startup()
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.no_mass_spec"),
optimization_level=0,
max_models=1)
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.with_mass_spec/frequency_matrices.csv.bz2"))
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.no_mass_spec/frequency_matrices.csv.bz2"))
def teardown():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
cleanup()
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def test_basic():
affinity_predictor = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
models = []
for affinity_network in affinity_predictor.class1_pan_allele_models:
presentation_network = Class1PresentationNeuralNetwork()
presentation_network.load_from_class1_neural_network(affinity_network)
models.append(presentation_network)
predictor = Class1PresentationPredictor(
models=models,
allele_to_sequence=affinity_predictor.allele_to_sequence)
alleles = ["HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:02"]
df = pandas.DataFrame(index=numpy.unique(random_peptides(1000, length=9)))
for allele in alleles:
df[allele] = affinity_predictor.predict(
df.index.values, allele=allele)
df["tightest_affinity"] = df.min(1)
df["tightest_allele"] = df.idxmin(1)
df2 = predictor.predict_to_dataframe(
peptides=df.index.values,
alleles=alleles)
merged_df = pandas.merge(
df, df2.set_index("peptide"), left_index=True, right_index=True)
assert_array_equal(merged_df["tightest_affinity"], merged_df["affinity"])
assert_array_equal(merged_df["tightest_affinity"], to_ic50(merged_df["score"]))
assert_array_equal(merged_df["tightest_allele"], merged_df["allele"])
# TODO: test fitting, saving, and loading
def scramble_peptide(peptide):
lst = list(peptide)
shuffle(lst)
return "".join(lst)
def evaluate_loss(loss, y_true, y_pred):
import keras.backend as K
y_true = numpy.array(y_true)
y_pred = numpy.array(y_pred)
if y_pred.ndim == 1:
y_pred = y_pred.reshape((len(y_pred), 1))
if y_true.ndim == 1:
y_true = y_true.reshape((len(y_true), 1))
if K.backend() == "tensorflow":
session = K.get_session()
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval(session=session)
elif K.backend() == "theano":
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval()
else:
raise ValueError("Unsupported backend: %s" % K.backend())
print("delta", delta)
# Hit labels
y_true = [
1.0,
0.0,
1.0,
1.0,
0.0
]
y_true = numpy.array(y_true)
y_pred = [
[0.3, 0.7, 0.5],
[0.2, 0.4, 0.6],
[0.1, 0.5, 0.3],
]
y_pred = numpy.array(y_pred)
# reference implementation 1
def smooth_max(x, alpha):
x = numpy.array(x)
alpha = numpy.array([alpha])
return (x * numpy.exp(x * alpha)).sum() / (
numpy.exp(x * alpha)).sum()
contributions = []
for i in range(len(y_true)):
if y_true[i] == 1.0:
for j in range(len(y_true)):
if y_true[j] == 0.0:
tightest_i = max(y_pred[i])
contribution = sum(
max(0, y_pred[j, k] - tightest_i + delta)**2
for k in range(y_pred.shape[1])
)
contributions.append(contribution)
contributions = numpy.array(contributions)
# reference implementation 2: numpy
pos = numpy.array([
max(y_pred[i])
for i in range(len(y_pred))
if y_true[i] == 1.0
])
numpy.maximum(0, neg.reshape((-1, 1)) - pos + delta)**2).sum() / (
len(pos) * len(neg))
yield numpy.testing.assert_almost_equal, expected1, expected2, 4
computed = evaluate_loss(
MultiallelicMassSpecLoss(delta=delta).loss,
y_true,
y_pred.reshape(y_pred.shape + (1,)))
yield numpy.testing.assert_almost_equal, computed, expected1, 4
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
AA_DIST = pandas.Series(
dict((line.split()[0], float(line.split()[1])) for line in """
A 0.071732
E 0.060102
N 0.034679
D 0.039601
T 0.055313
L 0.115337
V 0.070498
S 0.071882
Q 0.040436
F 0.050178
G 0.053176
C 0.005429
H 0.025487
I 0.056312
W 0.013593
K 0.057832
M 0.021079
Y 0.043372
R 0.060330
P 0.053632
""".strip().split("\n")))
print(AA_DIST)
def make_random_peptides(num_peptides_per_length=10000, lengths=[9]):
peptides = []
for length in lengths:
peptides.extend(
random_peptides
(num_peptides_per_length, length=length, distribution=AA_DIST))
return EncodableSequences.create(peptides)
def make_motif(allele, peptides, frac=0.01):
peptides = EncodableSequences.create(peptides)
predictions = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.predict(
peptides=peptides,
allele=allele,
)
random_predictions_df = pandas.DataFrame({"peptide": peptides.sequences})
random_predictions_df["prediction"] = predictions
random_predictions_df = random_predictions_df.sort_values(
"prediction", ascending=True)
top = random_predictions_df.iloc[:int(len(random_predictions_df) * frac)]
matrix = positional_frequency_matrix(top.peptide.values)
return matrix
ms_df = pandas.read_csv(
get_path("data_mass_spec_annotated", "annotated_ms.csv.bz2"))
ms_df = ms_df.loc[
(ms_df.mhc_class == "I") & (~ms_df.protein_ensembl.isnull())].copy()
sample_table = ms_df.drop_duplicates(
"sample_id").set_index("sample_id").loc[ms_df.sample_id.unique()]
grouped = ms_df.groupby("sample_id").nunique()
for col in sample_table.columns:
if (grouped[col] > 1).any():
del sample_table[col]
sample_table["alleles"] = sample_table.hla.str.split()
ms_df.sample_id == "RA957"
].drop_duplicates("peptide")[["peptide", "sample_id"]].reset_index(drop=True)
multi_train_hit_df["label"] = 1.0
multi_train_decoy_df = ms_df.loc[
(ms_df.sample_id == "CD165") &
(~ms_df.peptide.isin(multi_train_hit_df.peptide.unique()))
].drop_duplicates("peptide")[["peptide"]]
(multi_train_decoy_df["sample_id"],) = multi_train_hit_df.sample_id.unique()
multi_train_decoy_df["label"] = 0.0
multi_train_df = pandas.concat(
[multi_train_hit_df, multi_train_decoy_df], ignore_index=True)
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
multi_train_df["is_affinity"] = False
multi_train_alleles = set()
for alleles in sample_table.loc[multi_train_df.sample_id.unique()].alleles:
multi_train_alleles.update(alleles)
multi_train_alleles = sorted(multi_train_alleles)
pan_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
pan_sub_train_df = pan_train_df.loc[
pan_train_df.allele.isin(multi_train_alleles),
["peptide", "allele", "measurement_inequality", "measurement_value"]
]
pan_sub_train_df["label"] = pan_sub_train_df["measurement_value"]
del pan_sub_train_df["measurement_value"]
pan_sub_train_df["is_affinity"] = True
pan_predictor = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.with_mass_spec"),
optimization_level=0,
max_models=1)
allele_encoding = MultipleAlleleEncoding(
experiment_names=multi_train_df.sample_id.values,
experiment_to_allele_list=sample_table.alleles.to_dict(),
max_alleles_per_experiment=sample_table.alleles.str.len().max(),
allele_to_sequence=pan_predictor.allele_to_sequence,
)
allele_encoding.append_alleles(pan_sub_train_df.allele.values)
allele_encoding = allele_encoding.compact()
combined_train_df = pandas.concat([multi_train_df, pan_sub_train_df])
output="affinities",
peptides=combined_train_df.peptide.values,
(model,) = pan_predictor.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(combined_train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))[:,0]
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in multi_train_alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
print("Pre fitting:")
update_motifs()
print("Fitting...")
peptides=combined_train_df.peptide.values,
labels=combined_train_df.label.values,
allele_encoding=allele_encoding,
affinities_mask=combined_train_df.is_affinity.values,
inequalities=combined_train_df.measurement_inequality.values,
progress_callback=update_motifs,
)
def Xtest_synthetic_allele_refinement_with_affinity_data(max_epochs=10):
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
mms_train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
mms_train_df["label"] = mms_train_df.hit
mms_train_df["is_affinity"] = False
affinity_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
affinity_train_df = affinity_train_df.loc[
affinity_train_df.allele.isin(alleles),
["peptide", "allele", "measurement_inequality", "measurement_value"]]
affinity_train_df["label"] = affinity_train_df["measurement_value"]
del affinity_train_df["measurement_value"]
affinity_train_df["is_affinity"] = True
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC,
auxiliary_input_features=["gene"],
max_ensemble_size=1,
max_epochs=max_epochs,
learning_rate=0.0001,
patience=5,
min_delta=0.0,
random_negative_rate=1.0,
random_negative_constant=25)
mms_allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(mms_train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
)
allele_encoding = copy.deepcopy(mms_allele_encoding)
allele_encoding.append_alleles(affinity_train_df.allele.values)
allele_encoding = allele_encoding.compact()
train_df = pandas.concat(
[mms_train_df, affinity_train_df], ignore_index=True, sort=False)
pre_predictions = from_ic50(
predictor.predict(
output="affinities_matrix",
peptides=mms_train_df.peptide.values,
alleles=mms_allele_encoding))
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(mms_train_df.peptide.values, len(alleles)),
allele_encoding=mms_allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
mms_train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(mms_train_df.hit.values, mms_train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
metric_rows = []
def progress():
predictor.predict(
output="all",
peptides=mms_train_df.peptide.values,
alleles=mms_allele_encoding))
affinities_predictions = from_ic50(affinities_predictions)
for (kind, predictions) in [
("affinities", affinities_predictions),
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
mms_train_df["max_prediction"] = predictions.max(1)
mms_train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()
].values
print(kind)
print(predictions)
mean_predictions_for_hit = mms_train_df.loc[
mms_train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = mms_train_df.loc[
mms_train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
mms_train_df.loc[mms_train_df.hit == 1.0].predicted_allele ==
mms_train_df.loc[mms_train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(mms_train_df.hit.values, mms_train_df.max_prediction.values)
print(kind, "Mean prediction for hit", mean_predictions_for_hit)
print(kind, "Mean prediction for decoy", mean_predictions_for_decoy)
print(kind, "Correct predicted allele fraction", correct_allele_fraction)
print(kind, "AUC", auc)
metric_rows.append((
kind,
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.label.values,
inequalities=train_df.measurement_inequality.values,
affinities_mask=train_df.is_affinity.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
]
)
metrics = pandas.DataFrame(
metric_rows,
columns=[
"output",
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
return (predictor, predictions, metrics, motifs)
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
min_delta=0.0,
random_negative_rate=0.0,
random_negative_constant=0)
allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
).compact()
pre_predictions = from_ic50(
predictor.predict(
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(train_df.hit.values, train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
alleles=allele_encoding))
affinities_predictions = from_ic50(affinities_predictions)
for (kind, predictions) in [
("affinities", affinities_predictions),
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
train_df["max_prediction"] = predictions.max(1)
train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()
].values
print(kind)
print(predictions)
mean_predictions_for_hit = train_df.loc[
train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = train_df.loc[
train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
train_df.loc[train_df.hit == 1.0].predicted_allele ==
train_df.loc[train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(train_df.hit.values, train_df.max_prediction.values)
print(kind, "Mean prediction for hit", mean_predictions_for_hit)
print(kind, "Mean prediction for decoy", mean_predictions_for_decoy)
print(kind, "Correct predicted allele fraction", correct_allele_fraction)
print(kind, "AUC", auc)
metric_rows.append((
kind,
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.hit.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
multi_train_df = pandas.read_csv(
data_path("multiallelic_ms.benchmark1.csv.bz2"))
multi_train_df["label"] = multi_train_df.hit
multi_train_df["is_affinity"] = False
sample_table = multi_train_df.loc[
multi_train_df.label == True
].drop_duplicates("sample_id").set_index("sample_id").loc[
multi_train_df.sample_id.unique()
]
grouped = multi_train_df.groupby("sample_id").nunique()
for col in sample_table.columns:
if (grouped[col] > 1).any():
del sample_table[col]
sample_table["alleles"] = sample_table.hla.str.split()
pan_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
pan_sub_train_df = pan_train_df
pan_sub_train_df["label"] = pan_sub_train_df["measurement_value"]
del pan_sub_train_df["measurement_value"]
pan_sub_train_df["is_affinity"] = True
pan_sub_train_df = pan_sub_train_df.sample(frac=sample_rate)
multi_train_df = multi_train_df.sample(frac=sample_rate)
pan_predictor = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.with_mass_spec"),
optimization_level=0,
max_models=1)
allele_encoding = MultipleAlleleEncoding(
experiment_names=multi_train_df.sample_id.values,
experiment_to_allele_list=sample_table.alleles.to_dict(),
max_alleles_per_experiment=sample_table.alleles.str.len().max(),
allele_to_sequence=pan_predictor.allele_to_sequence,
)
allele_encoding.append_alleles(pan_sub_train_df.allele.values)
allele_encoding = allele_encoding.compact()
combined_train_df = pandas.concat(
[multi_train_df, pan_sub_train_df], ignore_index=True, sort=True)
pan_predictor,
auxiliary_input_features=[],
max_ensemble_size=1,
max_epochs=0,
batch_generator_batch_size=128,
learning_rate=0.0001,
patience=5,
min_delta=0.0,
random_negative_rate=1.0)
peptides=combined_train_df.peptide.values,
labels=combined_train_df.label.values,
allele_encoding=allele_encoding,
affinities_mask=combined_train_df.is_affinity.values,
inequalities=combined_train_df.measurement_inequality.values,
)
batch_generator = fit_results['batch_generator']
train_batch_plan = batch_generator.train_batch_plan
assert_greater(len(train_batch_plan.equivalence_class_labels), 100)
assert_less(len(train_batch_plan.equivalence_class_labels), 1000)
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--out-metrics-csv",
default=None,
help="Metrics output")
parser.add_argument(
"--out-motifs-pickle",
parser.add_argument(
"--max-epochs",
default=100,
type=int,
help="Max epochs")
if __name__ == '__main__':
# If run directly from python, leave the user in a shell to explore results.
setup()
args = parser.parse_args(sys.argv[1:])
(predictor, predictions, metrics, motifs) = (
test_synthetic_allele_refinement(max_epochs=args.max_epochs))
if args.out_metrics_csv:
metrics.to_csv(args.out_metrics_csv)
if args.out_motifs_pickle:
motifs.to_pickle(args.out_motifs_pickle)
# Leave in ipython
import ipdb # pylint: disable=import-error
ipdb.set_trace()