Newer
Older
"""
Idea:
- take an allele where MS vs. no-MS trained predictors are very different. One
possiblility is DLA-88*501:01 but human would be better
- generate synethetic multi-allele MS by combining single-allele MS for differnet
alleles, including the selected allele
- train presentation predictor based on the no-ms pan-allele models on theis
synthetic dataset
- see if the pan-allele predictor learns the "correct" motif for the selected
allele, i.e. updates to become more similar to the with-ms pan allele predictor.
"""
import logging
logging.getLogger('tensorflow').disabled = True
logging.getLogger('matplotlib').disabled = True
import pandas
import argparse
import sys
import numpy
from random import shuffle
from mhcflurry import Class1AffinityPredictor, Class1NeuralNetwork
from mhcflurry.class1_presentation_neural_network import Class1PresentationNeuralNetwork
from mhcflurry.common import random_peptides, positional_frequency_matrix
from mhcflurry.testing_utils import cleanup, startup
from mhcflurry.amino_acid import COMMON_AMINO_ACIDS
from mhcflurry.custom_loss import MultiallelicMassSpecLoss
COMMON_AMINO_ACIDS = sorted(COMMON_AMINO_ACIDS)
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
def data_path(name):
'''
Return the absolute path to a file in the test/data directory.
The name specified should be relative to test/data.
'''
return os.path.join(os.path.dirname(__file__), "data", name)
def setup():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
startup()
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.no_mass_spec"),
optimization_level=0,
max_models=1)
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.with_mass_spec/frequency_matrices.csv.bz2"))
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.no_mass_spec/frequency_matrices.csv.bz2"))
def teardown():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
cleanup()
def scramble_peptide(peptide):
lst = list(peptide)
shuffle(lst)
return "".join(lst)
def evaluate_loss(loss, y_true, y_pred):
import keras.backend as K
y_true = numpy.array(y_true)
y_pred = numpy.array(y_pred)
if y_pred.ndim == 1:
y_pred = y_pred.reshape((len(y_pred), 1))
if y_true.ndim == 1:
y_true = y_true.reshape((len(y_true), 1))
if K.backend() == "tensorflow":
session = K.get_session()
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval(session=session)
elif K.backend() == "theano":
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval()
else:
raise ValueError("Unsupported backend: %s" % K.backend())
print("delta", delta)
# Hit labels
y_true = [
1.0,
0.0,
1.0,
1.0,
0.0
]
y_true = numpy.array(y_true)
y_pred = [
[0.3, 0.7, 0.5],
[0.2, 0.4, 0.6],
[0.1, 0.5, 0.3],
]
y_pred = numpy.array(y_pred)
# reference implementation 1
def smooth_max(x, alpha):
x = numpy.array(x)
alpha = numpy.array([alpha])
return (x * numpy.exp(x * alpha)).sum() / (
numpy.exp(x * alpha)).sum()
contributions = []
for i in range(len(y_true)):
if y_true[i] == 1.0:
for j in range(len(y_true)):
if y_true[j] == 0.0:
tightest_i = max(y_pred[i])
contribution = sum(
max(0, y_pred[j, k] - tightest_i + delta)**2
for k in range(y_pred.shape[1])
)
contributions.append(contribution)
contributions = numpy.array(contributions)
# reference implementation 2: numpy
pos = numpy.array([
max(y_pred[i])
for i in range(len(y_pred))
if y_true[i] == 1.0
])
numpy.maximum(0, neg.reshape((-1, 1)) - pos + delta)**2).sum() / (
len(pos) * len(neg))
yield numpy.testing.assert_almost_equal, expected1, expected2, 4
computed = evaluate_loss(
MultiallelicMassSpecLoss(delta=delta).loss,
y_true,
y_pred.reshape(y_pred.shape + (1,)))
yield numpy.testing.assert_almost_equal, computed, expected1, 4
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
AA_DIST = pandas.Series(
dict((line.split()[0], float(line.split()[1])) for line in """
A 0.071732
E 0.060102
N 0.034679
D 0.039601
T 0.055313
L 0.115337
V 0.070498
S 0.071882
Q 0.040436
F 0.050178
G 0.053176
C 0.005429
H 0.025487
I 0.056312
W 0.013593
K 0.057832
M 0.021079
Y 0.043372
R 0.060330
P 0.053632
""".strip().split("\n")))
print(AA_DIST)
def make_random_peptides(num_peptides_per_length=10000, lengths=[9]):
peptides = []
for length in lengths:
peptides.extend(
random_peptides
(num_peptides_per_length, length=length, distribution=AA_DIST))
return EncodableSequences.create(peptides)
def make_motif(allele, peptides, frac=0.01):
peptides = EncodableSequences.create(peptides)
predictions = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.predict(
peptides=peptides,
allele=allele,
)
random_predictions_df = pandas.DataFrame({"peptide": peptides.sequences})
random_predictions_df["prediction"] = predictions
random_predictions_df = random_predictions_df.sort_values(
"prediction", ascending=True)
top = random_predictions_df.iloc[:int(len(random_predictions_df) * frac)]
matrix = positional_frequency_matrix(top.peptide.values)
return matrix
ms_df = pandas.read_csv(
get_path("data_mass_spec_annotated", "annotated_ms.csv.bz2"))
ms_df = ms_df.loc[
(ms_df.mhc_class == "I") & (~ms_df.protein_ensembl.isnull())].copy()
sample_table = ms_df.drop_duplicates(
"sample_id").set_index("sample_id").loc[ms_df.sample_id.unique()]
grouped = ms_df.groupby("sample_id").nunique()
for col in sample_table.columns:
if (grouped[col] > 1).any():
del sample_table[col]
sample_table["alleles"] = sample_table.hla.str.split()
ms_df.sample_id == "RA957"
].drop_duplicates("peptide")[["peptide", "sample_id"]].reset_index(drop=True)
multi_train_hit_df["label"] = 1.0
multi_train_decoy_df = ms_df.loc[
(ms_df.sample_id == "CD165") &
(~ms_df.peptide.isin(multi_train_hit_df.peptide.unique()))
].drop_duplicates("peptide")[["peptide"]]
(multi_train_decoy_df["sample_id"],) = multi_train_hit_df.sample_id.unique()
multi_train_decoy_df["label"] = 0.0
multi_train_df = pandas.concat(
[multi_train_hit_df, multi_train_decoy_df], ignore_index=True)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
multi_train_df["is_affinity"] = False
multi_train_alleles = set()
for alleles in sample_table.loc[multi_train_df.sample_id.unique()].alleles:
multi_train_alleles.update(alleles)
multi_train_alleles = sorted(multi_train_alleles)
pan_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
pan_sub_train_df = pan_train_df.loc[
pan_train_df.allele.isin(multi_train_alleles),
["peptide", "allele", "measurement_inequality", "measurement_value"]
]
pan_sub_train_df["label"] = pan_sub_train_df["measurement_value"]
del pan_sub_train_df["measurement_value"]
pan_sub_train_df["is_affinity"] = True
pan_predictor = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.with_mass_spec"),
optimization_level=0,
max_models=1)
allele_encoding = MultipleAlleleEncoding(
experiment_names=multi_train_df.sample_id.values,
experiment_to_allele_list=sample_table.alleles.to_dict(),
max_alleles_per_experiment=sample_table.alleles.str.len().max(),
allele_to_sequence=pan_predictor.allele_to_sequence,
)
allele_encoding.append_alleles(pan_sub_train_df.allele.values)
allele_encoding = allele_encoding.compact()
combined_train_df = pandas.concat([multi_train_df, pan_sub_train_df])
output="affinities",
peptides=combined_train_df.peptide.values,
(model,) = pan_predictor.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(combined_train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))[:,0]
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in multi_train_alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
print("Pre fitting:")
update_motifs()
print("Fitting...")
peptides=combined_train_df.peptide.values,
labels=combined_train_df.label.values,
allele_encoding=allele_encoding,
affinities_mask=combined_train_df.is_affinity.values,
inequalities=combined_train_df.measurement_inequality.values,
progress_callback=update_motifs,
)
def test_synthetic_allele_refinement_with_affinity_data(max_epochs=10):
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
mms_train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
mms_train_df["label"] = mms_train_df.hit
mms_train_df["is_affinity"] = False
affinity_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
affinity_train_df = affinity_train_df.loc[
affinity_train_df.allele.isin(alleles),
["peptide", "allele", "measurement_inequality", "measurement_value"]]
affinity_train_df["label"] = affinity_train_df["measurement_value"]
del affinity_train_df["measurement_value"]
affinity_train_df["is_affinity"] = True
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC,
auxiliary_input_features=["gene"],
max_ensemble_size=1,
max_epochs=max_epochs,
learning_rate=0.0001,
patience=5,
min_delta=0.0,
random_negative_rate=1.0,
random_negative_constant=25)
mms_allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(mms_train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
)
allele_encoding = copy.deepcopy(mms_allele_encoding)
allele_encoding.append_alleles(affinity_train_df.allele.values)
allele_encoding = allele_encoding.compact()
train_df = pandas.concat(
[mms_train_df, affinity_train_df], ignore_index=True, sort=False)
pre_predictions = from_ic50(
predictor.predict(
output="affinities_matrix",
peptides=mms_train_df.peptide.values,
alleles=mms_allele_encoding))
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(mms_train_df.peptide.values, len(alleles)),
allele_encoding=mms_allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
mms_train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(mms_train_df.hit.values, mms_train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
metric_rows = []
def progress():
predictor.predict(
output="all",
peptides=mms_train_df.peptide.values,
alleles=mms_allele_encoding))
affinities_predictions = from_ic50(affinities_predictions)
for (kind, predictions) in [
("affinities", affinities_predictions),
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
mms_train_df["max_prediction"] = predictions.max(1)
mms_train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()
].values
print(kind)
print(predictions)
mean_predictions_for_hit = mms_train_df.loc[
mms_train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = mms_train_df.loc[
mms_train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
mms_train_df.loc[mms_train_df.hit == 1.0].predicted_allele ==
mms_train_df.loc[mms_train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(mms_train_df.hit.values, mms_train_df.max_prediction.values)
print(kind, "Mean prediction for hit", mean_predictions_for_hit)
print(kind, "Mean prediction for decoy", mean_predictions_for_decoy)
print(kind, "Correct predicted allele fraction", correct_allele_fraction)
print(kind, "AUC", auc)
metric_rows.append((
kind,
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.label.values,
inequalities=train_df.measurement_inequality.values,
affinities_mask=train_df.is_affinity.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
]
)
metrics = pandas.DataFrame(
metric_rows,
columns=[
"output",
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
return (predictor, predictions, metrics, motifs)
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
min_delta=0.0,
random_negative_rate=0.0,
random_negative_constant=0)
allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
).compact()
pre_predictions = from_ic50(
predictor.predict(
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(train_df.hit.values, train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
assert_allclose(pre_predictions, expected_pre_predictions, rtol=1e-4)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
alleles=allele_encoding))
affinities_predictions = from_ic50(affinities_predictions)
for (kind, predictions) in [
("affinities", affinities_predictions),
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
train_df["max_prediction"] = predictions.max(1)
train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()
].values
print(kind)
print(predictions)
mean_predictions_for_hit = train_df.loc[
train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = train_df.loc[
train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
train_df.loc[train_df.hit == 1.0].predicted_allele ==
train_df.loc[train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(train_df.hit.values, train_df.max_prediction.values)
print(kind, "Mean prediction for hit", mean_predictions_for_hit)
print(kind, "Mean prediction for decoy", mean_predictions_for_decoy)
print(kind, "Correct predicted allele fraction", correct_allele_fraction)
print(kind, "AUC", auc)
metric_rows.append((
kind,
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.hit.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
multi_train_df = pandas.read_csv(
data_path("multiallelic_ms.benchmark1.csv.bz2"))
multi_train_df["label"] = multi_train_df.hit
multi_train_df["is_affinity"] = False
sample_table = multi_train_df.loc[
multi_train_df.label == True
].drop_duplicates("sample_id").set_index("sample_id").loc[
multi_train_df.sample_id.unique()
]
grouped = multi_train_df.groupby("sample_id").nunique()
for col in sample_table.columns:
if (grouped[col] > 1).any():
del sample_table[col]
sample_table["alleles"] = sample_table.hla.str.split()
pan_train_df = pandas.read_csv(
get_path(
"models_class1_pan", "models.with_mass_spec/train_data.csv.bz2"))
pan_sub_train_df = pan_train_df
pan_sub_train_df["label"] = pan_sub_train_df["measurement_value"]
del pan_sub_train_df["measurement_value"]
pan_sub_train_df["is_affinity"] = True
pan_sub_train_df = pan_sub_train_df.sample(frac=sample_rate)
multi_train_df = multi_train_df.sample(frac=sample_rate)
pan_predictor = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.with_mass_spec"),
optimization_level=0,
max_models=1)
allele_encoding = MultipleAlleleEncoding(
experiment_names=multi_train_df.sample_id.values,
experiment_to_allele_list=sample_table.alleles.to_dict(),
max_alleles_per_experiment=sample_table.alleles.str.len().max(),
allele_to_sequence=pan_predictor.allele_to_sequence,
)
allele_encoding.append_alleles(pan_sub_train_df.allele.values)
allele_encoding = allele_encoding.compact()
combined_train_df = pandas.concat(
[multi_train_df, pan_sub_train_df], ignore_index=True, sort=True)
pan_predictor,
auxiliary_input_features=[],
max_ensemble_size=1,
max_epochs=0,
batch_generator_batch_size=128,
learning_rate=0.0001,
patience=5,
min_delta=0.0,
random_negative_rate=1.0)
peptides=combined_train_df.peptide.values,
labels=combined_train_df.label.values,
allele_encoding=allele_encoding,
affinities_mask=combined_train_df.is_affinity.values,
inequalities=combined_train_df.measurement_inequality.values,
)
batch_generator = fit_results['batch_generator']
train_batch_plan = batch_generator.train_batch_plan
assert_greater(len(train_batch_plan.equivalence_class_labels), 100)
assert_less(len(train_batch_plan.equivalence_class_labels), 1000)
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--out-metrics-csv",
default=None,
help="Metrics output")
parser.add_argument(
"--out-motifs-pickle",
parser.add_argument(
"--max-epochs",
default=100,
type=int,
help="Max epochs")
if __name__ == '__main__':
# If run directly from python, leave the user in a shell to explore results.
setup()
args = parser.parse_args(sys.argv[1:])
(predictor, predictions, metrics, motifs) = (
test_synthetic_allele_refinement(max_epochs=args.max_epochs))
if args.out_metrics_csv:
metrics.to_csv(args.out_metrics_csv)
if args.out_motifs_pickle:
motifs.to_pickle(args.out_motifs_pickle)
# Leave in ipython
import ipdb # pylint: disable=import-error
ipdb.set_trace()