Skip to content
Snippets Groups Projects
Commit 882a5a69 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

dropping py2 support

parent eeab5995
No related merge requests found
language: python language: python
python: python:
- "2.7"
- "3.6" - "3.6"
- "3.7"
before_install: before_install:
- if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then - if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then
wget https://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O miniconda.sh; wget https://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O miniconda.sh;
......
...@@ -8,7 +8,7 @@ prediction package with competitive accuracy and a fast and ...@@ -8,7 +8,7 @@ prediction package with competitive accuracy and a fast and
MHCflurry implements class I peptide/MHC binding affinity prediction. By default MHCflurry implements class I peptide/MHC binding affinity prediction. By default
it supports 112 MHC alleles using ensembles of allele-specific models. it supports 112 MHC alleles using ensembles of allele-specific models.
Pan-allele predictors supporting virtually any MHC allele of known sequence Pan-allele predictors supporting virtually any MHC allele of known sequence
are available for testing (see below). MHCflurry runs on Python 2.7 and 3.4+ using the are available for testing (see below). MHCflurry runs on Python 3.4+ using the
[keras](https://keras.io) neural network library. [keras](https://keras.io) neural network library.
It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html) It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html) and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html)
......
...@@ -422,7 +422,7 @@ class Class1AffinityPredictor(object): ...@@ -422,7 +422,7 @@ class Class1AffinityPredictor(object):
numpy.testing.assert_array_almost_equal( numpy.testing.assert_array_almost_equal(
series.index.values, series.index.values,
percent_ranks_df.index.values) percent_ranks_df.index.values)
percent_ranks_df[allele] = series percent_ranks_df[allele] = series.values
percent_ranks_path = join(models_dir, "percent_ranks.csv") percent_ranks_path = join(models_dir, "percent_ranks.csv")
percent_ranks_df.to_csv( percent_ranks_df.to_csv(
percent_ranks_path, percent_ranks_path,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment