diff --git a/.travis.yml b/.travis.yml index 59c0596a51c52033dd352a0acfd23629dfd3bd3d..3dcd04811102783500209570d7223481bb9aa738 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,7 +1,7 @@ language: python python: - - "2.7" - "3.6" + - "3.7" before_install: - if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then wget https://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O miniconda.sh; diff --git a/README.md b/README.md index 1b5991f29c809a76218774b4cd47baec19238570..cc97f4f735e4ec7c91dc27591d0cd411fec1c2f0 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ prediction package with competitive accuracy and a fast and MHCflurry implements class I peptide/MHC binding affinity prediction. By default it supports 112 MHC alleles using ensembles of allele-specific models. Pan-allele predictors supporting virtually any MHC allele of known sequence -are available for testing (see below). MHCflurry runs on Python 2.7 and 3.4+ using the +are available for testing (see below). MHCflurry runs on Python 3.4+ using the [keras](https://keras.io) neural network library. It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html) and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html) diff --git a/mhcflurry/class1_affinity_predictor.py b/mhcflurry/class1_affinity_predictor.py index b6f2d903e42e4c6140443f120c17a9fc6d4d63d2..3c268bb73e9a049704d86ba976d77732843b752a 100644 --- a/mhcflurry/class1_affinity_predictor.py +++ b/mhcflurry/class1_affinity_predictor.py @@ -422,7 +422,7 @@ class Class1AffinityPredictor(object): numpy.testing.assert_array_almost_equal( series.index.values, percent_ranks_df.index.values) - percent_ranks_df[allele] = series + percent_ranks_df[allele] = series.values percent_ranks_path = join(models_dir, "percent_ranks.csv") percent_ranks_df.to_csv( percent_ranks_path,