Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
864cabaa
Commit
864cabaa
authored
5 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
better loss
parent
288e0db7
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
mhcflurry/class1_ligandome_predictor.py
+8
-67
8 additions, 67 deletions
mhcflurry/class1_ligandome_predictor.py
test/test_class1_ligandome_predictor.py
+17
-14
17 additions, 14 deletions
test/test_class1_ligandome_predictor.py
with
25 additions
and
81 deletions
mhcflurry/class1_ligandome_predictor.py
+
8
−
67
View file @
864cabaa
...
@@ -140,88 +140,29 @@ class Class1LigandomePredictor(object):
...
@@ -140,88 +140,29 @@ class Class1LigandomePredictor(object):
name
=
"
ligandome
"
,
name
=
"
ligandome
"
,
)
)
#print('trainable', network.get_layer("td_dense_0").trainable)
#print('trainable', network.get_layer("td_dense_0").trainable)
network
.
get_layer
(
"
td_dense_0
"
).
trainable
=
False
#
network.get_layer("td_dense_0").trainable = False
#print('trainable', network.get_layer("td_dense_0").trainable)
#print('trainable', network.get_layer("td_dense_0").trainable)
return
network
return
network
@staticmethod
@staticmethod
def
loss
(
y_true
,
y_pred
,
lmbda
=
0.001
):
def
loss
(
y_true
,
y_pred
,
delta
=
0.2
):
import
keras.backend
as
K
"""
Loss function for ligandome prediction.
"""
import
tensorflow
as
tf
import
tensorflow
as
tf
y_pred
=
tf
.
squeeze
(
y_pred
,
axis
=-
1
)
y_pred
=
tf
.
squeeze
(
y_pred
,
axis
=-
1
)
#y_pred = tf.Print(y_pred, [y_pred, tf.shape(y_pred)], "y_pred", summarize=20)
#y_true = tf.Print(y_true, [y_true, tf.shape(y_true)], "y_true", summarize=20)
y_true
=
tf
.
reshape
(
tf
.
cast
(
y_true
,
tf
.
bool
),
(
-
1
,))
y_true
=
tf
.
reshape
(
tf
.
cast
(
y_true
,
tf
.
bool
),
(
-
1
,))
pos
=
tf
.
boolean_mask
(
y_pred
,
y_true
)
pos
=
tf
.
boolean_mask
(
y_pred
,
y_true
)
pos_max
=
tf
.
reduce_max
(
pos
,
axis
=
1
)
#
pos_max = tf.reduce_max(pos, axis=1)
#pos_max = tf.reduce_logsumexp(tf.boolean_mask(y_pred, y_true), axis=1)
neg
=
tf
.
boolean_mask
(
y_pred
,
tf
.
logical_not
(
y_true
))
neg
=
tf
.
boolean_mask
(
y_pred
,
tf
.
logical_not
(
y_true
))
result
=
tf
.
reduce_sum
(
result
=
tf
.
reduce_sum
(
tf
.
maximum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
)
**
2
)
tf
.
maximum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
+
delta
)
**
2
)
term2
=
tf
.
reduce_sum
(
tf
.
minimum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
))
result
=
result
+
lmbda
*
term2
#differences = tf.reshape(neg, (-1, 1)) - pos
#result = tf.reduce_sum(tf.sign(differences) * differences**2)
#result = tf.Print(result, [result], "result", summarize=20)
#term2 = lmbda * tf.reduce_mean((1 - pos)**2)
#result = result + term2
return
result
return
result
"""
pos = tf.boolean_mask(y_pred, y_true)
pos = y_pred[y_true.astype(bool)].max(1)
neg = y_pred[~y_true.astype(bool)]
expected2 = (numpy.maximum(0,
neg.flatten().reshape((-1, 1)) - pos) ** 2).sum()
"""
@staticmethod
def
loss_old
(
y_true
,
y_pred
):
"""
Binary cross entropy after taking logsumexp over predictions
"""
import
keras.backend
as
K
import
tensorflow
as
tf
#y_pred_aggregated = K.logsumexp(y_pred, axis=1, keepdims=True)
#y_pred_aggregated = K.sigmoid(y_pred_aggregated)
#y_pred = tf.Print(y_pred, [y_pred], "y_pred", summarize=20)
#y_true = tf.Print(y_true, [y_true], "y_true", summarize=20)
y_pred_aggregated
=
K
.
max
(
y_pred
,
axis
=
1
,
keepdims
=
False
)
#y_pred_aggregated = tf.Print(y_pred_aggregated, [y_pred_aggregated], "y_pred_aggregated",
# summarize=20)
y_true
=
K
.
squeeze
(
K
.
cast
(
y_true
,
y_pred_aggregated
.
dtype
),
axis
=-
1
)
#print("SHAPES", y_pred, K.int_shape(y_pred), y_pred_aggregated, K.int_shape(y_pred_aggregated), y_true, K.int_shape(y_true))
#K.print_tensor(y_pred_aggregated, "y_pred_aggregated")
#K.print_tensor(y_true, "y_true")
#y_pred_aggregated = K.print_tensor(y_pred_aggregated, "y_pred_aggregated")
#y_true = K.print_tensor(y_true, "y_true")
#return K.mean(
# K.binary_crossentropy(y_true, y_pred_aggregated),
# axis=-1)
return
K
.
mean
(
(
y_true
-
y_pred_aggregated
)
**
2
,
axis
=-
1
)
def
peptides_to_network_input
(
self
,
peptides
):
def
peptides_to_network_input
(
self
,
peptides
):
"""
"""
Encode peptides to the fixed-length encoding expected by the neural
Encode peptides to the fixed-length encoding expected by the neural
...
...
This diff is collapsed.
Click to expand it.
test/test_class1_ligandome_predictor.py
+
17
−
14
View file @
864cabaa
...
@@ -21,6 +21,7 @@ logging.getLogger('matplotlib').disabled = True
...
@@ -21,6 +21,7 @@ logging.getLogger('matplotlib').disabled = True
import
pandas
import
pandas
import
argparse
import
argparse
import
sys
import
sys
from
functools
import
partial
from
numpy.testing
import
assert_
,
assert_equal
,
assert_allclose
from
numpy.testing
import
assert_
,
assert_equal
,
assert_allclose
import
numpy
import
numpy
...
@@ -107,7 +108,9 @@ def evaluate_loss(loss, y_true, y_pred):
...
@@ -107,7 +108,9 @@ def evaluate_loss(loss, y_true, y_pred):
raise
ValueError
(
"
Unsupported backend: %s
"
%
K
.
backend
())
raise
ValueError
(
"
Unsupported backend: %s
"
%
K
.
backend
())
def
Xtest_loss
():
def
test_loss
():
delta
=
0.4
# Hit labels
# Hit labels
y_true
=
[
y_true
=
[
1.0
,
1.0
,
...
@@ -134,7 +137,7 @@ def Xtest_loss():
...
@@ -134,7 +137,7 @@ def Xtest_loss():
if
y_true
[
j
]
==
0.0
:
if
y_true
[
j
]
==
0.0
:
tightest_i
=
max
(
y_pred
[
i
])
tightest_i
=
max
(
y_pred
[
i
])
contribution
=
sum
(
contribution
=
sum
(
max
(
0
,
y_pred
[
j
,
k
]
-
tightest_i
)
**
2
max
(
0
,
y_pred
[
j
,
k
]
-
tightest_i
+
delta
)
**
2
for
k
in
range
(
y_pred
.
shape
[
1
])
for
k
in
range
(
y_pred
.
shape
[
1
])
)
)
contributions
.
append
(
contribution
)
contributions
.
append
(
contribution
)
...
@@ -145,12 +148,12 @@ def Xtest_loss():
...
@@ -145,12 +148,12 @@ def Xtest_loss():
pos
=
y_pred
[
y_true
.
astype
(
bool
)].
max
(
1
)
pos
=
y_pred
[
y_true
.
astype
(
bool
)].
max
(
1
)
neg
=
y_pred
[
~
y_true
.
astype
(
bool
)]
neg
=
y_pred
[
~
y_true
.
astype
(
bool
)]
expected2
=
(
expected2
=
(
numpy
.
maximum
(
0
,
neg
.
reshape
((
-
1
,
1
))
-
pos
)
**
2
).
sum
()
numpy
.
maximum
(
0
,
neg
.
reshape
((
-
1
,
1
))
-
pos
+
delta
)
**
2
).
sum
()
numpy
.
testing
.
assert_almost_equal
(
expected1
,
expected2
)
numpy
.
testing
.
assert_almost_equal
(
expected1
,
expected2
)
computed
=
evaluate_loss
(
computed
=
evaluate_loss
(
Class1LigandomePredictor
.
loss
,
partial
(
Class1LigandomePredictor
.
loss
,
delta
=
delta
),
y_true
,
y_true
,
y_pred
.
reshape
(
y_pred
.
shape
+
(
1
,)))
y_pred
.
reshape
(
y_pred
.
shape
+
(
1
,)))
numpy
.
testing
.
assert_almost_equal
(
computed
,
expected1
)
numpy
.
testing
.
assert_almost_equal
(
computed
,
expected1
)
...
@@ -197,20 +200,16 @@ def make_motif(allele, peptides, frac=0.01):
...
@@ -197,20 +200,16 @@ def make_motif(allele, peptides, frac=0.01):
peptides
=
peptides
,
peptides
=
peptides
,
allele
=
allele
,
allele
=
allele
,
)
)
random_predictions_df
=
pandas
.
DataFrame
({
"
peptide
"
:
peptides
.
sequences
})
random_predictions_df
=
pandas
.
DataFrame
({
"
peptide
"
:
peptides
.
sequences
})
random_predictions_df
[
"
prediction
"
]
=
predictions
random_predictions_df
[
"
prediction
"
]
=
predictions
random_predictions_df
=
random_predictions_df
.
sort_values
(
random_predictions_df
=
random_predictions_df
.
sort_values
(
"
prediction
"
,
ascending
=
True
)
"
prediction
"
,
ascending
=
True
)
#print("Random peptide predictions", allele)
#print(random_predictions_df)
top
=
random_predictions_df
.
iloc
[:
int
(
len
(
random_predictions_df
)
*
frac
)]
top
=
random_predictions_df
.
iloc
[:
int
(
len
(
random_predictions_df
)
*
frac
)]
matrix
=
positional_frequency_matrix
(
top
.
peptide
.
values
)
matrix
=
positional_frequency_matrix
(
top
.
peptide
.
values
)
#print("Matrix")
return
matrix
return
matrix
def
test_synthetic_allele_refinement
():
def
test_synthetic_allele_refinement
(
max_epochs
=
10
):
refine_allele
=
"
HLA-C*01:02
"
refine_allele
=
"
HLA-C*01:02
"
alleles
=
[
alleles
=
[
"
HLA-A*02:01
"
,
"
HLA-B*27:01
"
,
"
HLA-C*07:01
"
,
"
HLA-A*02:01
"
,
"
HLA-B*27:01
"
,
"
HLA-C*07:01
"
,
...
@@ -266,8 +265,8 @@ def test_synthetic_allele_refinement():
...
@@ -266,8 +265,8 @@ def test_synthetic_allele_refinement():
predictor
=
Class1LigandomePredictor
(
predictor
=
Class1LigandomePredictor
(
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
,
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
,
max_ensemble_size
=
1
,
max_ensemble_size
=
1
,
max_epochs
=
10
,
max_epochs
=
max_epochs
,
learning_rate
=
0.000
0
1
,
learning_rate
=
0.0001
,
patience
=
5
,
patience
=
5
,
min_delta
=
0.0
)
min_delta
=
0.0
)
...
@@ -295,8 +294,6 @@ def test_synthetic_allele_refinement():
...
@@ -295,8 +294,6 @@ def test_synthetic_allele_refinement():
pre_auc
=
roc_auc_score
(
train_df
.
hit
.
values
,
train_df
.
pre_max_prediction
.
values
)
pre_auc
=
roc_auc_score
(
train_df
.
hit
.
values
,
train_df
.
pre_max_prediction
.
values
)
print
(
"
PRE_AUC
"
,
pre_auc
)
print
(
"
PRE_AUC
"
,
pre_auc
)
#import ipdb ; ipdb.set_trace()
assert_allclose
(
pre_predictions
,
expected_pre_predictions
)
assert_allclose
(
pre_predictions
,
expected_pre_predictions
)
motifs_history
=
[]
motifs_history
=
[]
...
@@ -396,13 +393,19 @@ parser.add_argument(
...
@@ -396,13 +393,19 @@ parser.add_argument(
"
--out-motifs-pickle
"
,
"
--out-motifs-pickle
"
,
default
=
None
,
default
=
None
,
help
=
"
Metrics output
"
)
help
=
"
Metrics output
"
)
parser
.
add_argument
(
"
--max-epochs
"
,
default
=
100
,
type
=
int
,
help
=
"
Max epochs
"
)
if
__name__
==
'
__main__
'
:
if
__name__
==
'
__main__
'
:
# If run directly from python, leave the user in a shell to explore results.
# If run directly from python, leave the user in a shell to explore results.
setup
()
setup
()
args
=
parser
.
parse_args
(
sys
.
argv
[
1
:])
args
=
parser
.
parse_args
(
sys
.
argv
[
1
:])
(
predictor
,
predictions
,
metrics
,
motifs
)
=
test_synthetic_allele_refinement
()
(
predictor
,
predictions
,
metrics
,
motifs
)
=
(
test_synthetic_allele_refinement
(
max_epochs
=
args
.
max_epochs
))
if
args
.
out_metrics_csv
:
if
args
.
out_metrics_csv
:
metrics
.
to_csv
(
args
.
out_metrics_csv
)
metrics
.
to_csv
(
args
.
out_metrics_csv
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment