Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
288e0db7
Commit
288e0db7
authored
5 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
updates
parent
7f6fb1dc
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
mhcflurry/class1_ligandome_predictor.py
+56
-2
56 additions, 2 deletions
mhcflurry/class1_ligandome_predictor.py
test/test_class1_ligandome_predictor.py
+225
-78
225 additions, 78 deletions
test/test_class1_ligandome_predictor.py
with
281 additions
and
80 deletions
mhcflurry/class1_ligandome_predictor.py
+
56
−
2
View file @
288e0db7
...
...
@@ -146,7 +146,52 @@ class Class1LigandomePredictor(object):
return
network
@staticmethod
def
loss
(
y_true
,
y_pred
):
def
loss
(
y_true
,
y_pred
,
lmbda
=
0.001
):
import
keras.backend
as
K
import
tensorflow
as
tf
y_pred
=
tf
.
squeeze
(
y_pred
,
axis
=-
1
)
#y_pred = tf.Print(y_pred, [y_pred, tf.shape(y_pred)], "y_pred", summarize=20)
#y_true = tf.Print(y_true, [y_true, tf.shape(y_true)], "y_true", summarize=20)
y_true
=
tf
.
reshape
(
tf
.
cast
(
y_true
,
tf
.
bool
),
(
-
1
,))
pos
=
tf
.
boolean_mask
(
y_pred
,
y_true
)
pos_max
=
tf
.
reduce_max
(
pos
,
axis
=
1
)
#pos_max = tf.reduce_logsumexp(tf.boolean_mask(y_pred, y_true), axis=1)
neg
=
tf
.
boolean_mask
(
y_pred
,
tf
.
logical_not
(
y_true
))
result
=
tf
.
reduce_sum
(
tf
.
maximum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
)
**
2
)
term2
=
tf
.
reduce_sum
(
tf
.
minimum
(
0.0
,
tf
.
reshape
(
neg
,
(
-
1
,
1
))
-
pos_max
))
result
=
result
+
lmbda
*
term2
#differences = tf.reshape(neg, (-1, 1)) - pos
#result = tf.reduce_sum(tf.sign(differences) * differences**2)
#result = tf.Print(result, [result], "result", summarize=20)
#term2 = lmbda * tf.reduce_mean((1 - pos)**2)
#result = result + term2
return
result
"""
pos = tf.boolean_mask(y_pred, y_true)
pos = y_pred[y_true.astype(bool)].max(1)
neg = y_pred[~y_true.astype(bool)]
expected2 = (numpy.maximum(0,
neg.flatten().reshape((-1, 1)) - pos) ** 2).sum()
"""
@staticmethod
def
loss_old
(
y_true
,
y_pred
):
"""
Binary cross entropy after taking logsumexp over predictions
"""
import
keras.backend
as
K
import
tensorflow
as
tf
...
...
@@ -230,6 +275,11 @@ class Class1LigandomePredictor(object):
import
keras.backend
as
K
#for layer in self.network._layers[:8]:
# print("Setting non trainable", layer)
# layer.trainable = False
# import ipdb ; ipdb.set_trace()
peptides
=
EncodableSequences
.
create
(
peptides
)
peptide_encoding
=
self
.
peptides_to_network_input
(
peptides
)
...
...
@@ -273,6 +323,9 @@ class Class1LigandomePredictor(object):
start
=
time
.
time
()
for
i
in
range
(
self
.
hyperparameters
[
'
max_epochs
'
]):
epoch_start
=
time
.
time
()
# TODO: need to use fit_generator to keep each minibatch corresponding
# to a single experiment
fit_history
=
self
.
network
.
fit
(
x_dict
,
labels
,
...
...
@@ -281,7 +334,8 @@ class Class1LigandomePredictor(object):
verbose
=
verbose
,
epochs
=
i
+
1
,
initial_epoch
=
i
,
validation_split
=
self
.
hyperparameters
[
'
validation_split
'
])
validation_split
=
self
.
hyperparameters
[
'
validation_split
'
],
)
epoch_time
=
time
.
time
()
-
epoch_start
for
(
key
,
value
)
in
fit_history
.
history
.
items
():
...
...
This diff is collapsed.
Click to expand it.
test/test_class1_ligandome_predictor.py
+
225
−
78
View file @
288e0db7
...
...
@@ -14,7 +14,10 @@ Idea:
"""
from
sklearn.metrics
import
roc_auc_score
import
logging
logging
.
getLogger
(
'
tensorflow
'
).
disabled
=
True
logging
.
getLogger
(
'
matplotlib
'
).
disabled
=
True
import
pandas
import
argparse
import
sys
...
...
@@ -25,12 +28,13 @@ from random import shuffle
from
sklearn.metrics
import
roc_auc_score
from
mhcflurry
import
Class1AffinityPredictor
,
Class1NeuralNetwork
from
mhcflurry
import
Class1AffinityPredictor
,
Class1NeuralNetwork
from
mhcflurry.allele_encoding
import
MultipleAlleleEncoding
from
mhcflurry.class1_ligandome_predictor
import
Class1LigandomePredictor
from
mhcflurry.encodable_sequences
import
EncodableSequences
from
mhcflurry.downloads
import
get_path
from
mhcflurry.regression_target
import
from_ic50
from
mhcflurry.common
import
random_peptides
,
positional_frequency_matrix
from
mhcflurry.testing_utils
import
cleanup
,
startup
from
mhcflurry.amino_acid
import
COMMON_AMINO_ACIDS
...
...
@@ -72,29 +76,140 @@ def teardown():
cleanup
()
def
sample_peptides_from_pssm
(
pssm
,
count
):
result
=
pandas
.
DataFrame
(
index
=
numpy
.
arange
(
count
),
columns
=
pssm
.
index
,
dtype
=
object
,
)
for
(
position
,
vector
)
in
pssm
.
iterrows
():
result
.
loc
[:,
position
]
=
numpy
.
random
.
choice
(
pssm
.
columns
,
size
=
count
,
replace
=
True
,
p
=
vector
.
values
)
return
result
.
apply
(
""
.
join
,
axis
=
1
)
def
scramble_peptide
(
peptide
):
lst
=
list
(
peptide
)
shuffle
(
lst
)
return
""
.
join
(
lst
)
def
evaluate_loss
(
loss
,
y_true
,
y_pred
):
import
keras.backend
as
K
y_true
=
numpy
.
array
(
y_true
)
y_pred
=
numpy
.
array
(
y_pred
)
if
y_pred
.
ndim
==
1
:
y_pred
=
y_pred
.
reshape
((
len
(
y_pred
),
1
))
if
y_true
.
ndim
==
1
:
y_true
=
y_true
.
reshape
((
len
(
y_true
),
1
))
if
K
.
backend
()
==
"
tensorflow
"
:
session
=
K
.
get_session
()
y_true_var
=
K
.
constant
(
y_true
,
name
=
"
y_true
"
)
y_pred_var
=
K
.
constant
(
y_pred
,
name
=
"
y_pred
"
)
result
=
loss
(
y_true_var
,
y_pred_var
)
return
result
.
eval
(
session
=
session
)
elif
K
.
backend
()
==
"
theano
"
:
y_true_var
=
K
.
constant
(
y_true
,
name
=
"
y_true
"
)
y_pred_var
=
K
.
constant
(
y_pred
,
name
=
"
y_pred
"
)
result
=
loss
(
y_true_var
,
y_pred_var
)
return
result
.
eval
()
else
:
raise
ValueError
(
"
Unsupported backend: %s
"
%
K
.
backend
())
def
Xtest_loss
():
# Hit labels
y_true
=
[
1.0
,
0.0
,
1.0
,
1.0
,
0.0
]
y_true
=
numpy
.
array
(
y_true
)
y_pred
=
[
[
0.3
,
0.7
,
0.5
],
[
0.2
,
0.4
,
0.6
],
[
0.1
,
0.5
,
0.3
],
[
0.1
,
0.7
,
0.1
],
[
0.8
,
0.2
,
0.4
],
]
y_pred
=
numpy
.
array
(
y_pred
)
# reference implementation 1
contributions
=
[]
for
i
in
range
(
len
(
y_true
)):
if
y_true
[
i
]
==
1.0
:
for
j
in
range
(
len
(
y_true
)):
if
y_true
[
j
]
==
0.0
:
tightest_i
=
max
(
y_pred
[
i
])
contribution
=
sum
(
max
(
0
,
y_pred
[
j
,
k
]
-
tightest_i
)
**
2
for
k
in
range
(
y_pred
.
shape
[
1
])
)
contributions
.
append
(
contribution
)
contributions
=
numpy
.
array
(
contributions
)
expected1
=
contributions
.
sum
()
# reference implementation 2: numpy
pos
=
y_pred
[
y_true
.
astype
(
bool
)].
max
(
1
)
neg
=
y_pred
[
~
y_true
.
astype
(
bool
)]
expected2
=
(
numpy
.
maximum
(
0
,
neg
.
reshape
((
-
1
,
1
))
-
pos
)
**
2
).
sum
()
numpy
.
testing
.
assert_almost_equal
(
expected1
,
expected2
)
computed
=
evaluate_loss
(
Class1LigandomePredictor
.
loss
,
y_true
,
y_pred
.
reshape
(
y_pred
.
shape
+
(
1
,)))
numpy
.
testing
.
assert_almost_equal
(
computed
,
expected1
)
AA_DIST
=
pandas
.
Series
(
dict
((
line
.
split
()[
0
],
float
(
line
.
split
()[
1
]))
for
line
in
"""
A 0.071732
E 0.060102
N 0.034679
D 0.039601
T 0.055313
L 0.115337
V 0.070498
S 0.071882
Q 0.040436
F 0.050178
G 0.053176
C 0.005429
H 0.025487
I 0.056312
W 0.013593
K 0.057832
M 0.021079
Y 0.043372
R 0.060330
P 0.053632
"""
.
strip
().
split
(
"
\n
"
)))
print
(
AA_DIST
)
def
make_random_peptides
(
num_peptides_per_length
=
10000
,
lengths
=
[
9
]):
peptides
=
[]
for
length
in
lengths
:
peptides
.
extend
(
random_peptides
(
num_peptides_per_length
,
length
=
length
,
distribution
=
AA_DIST
))
return
EncodableSequences
.
create
(
peptides
)
def
make_motif
(
allele
,
peptides
,
frac
=
0.01
):
peptides
=
EncodableSequences
.
create
(
peptides
)
predictions
=
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
.
predict
(
peptides
=
peptides
,
allele
=
allele
,
)
random_predictions_df
=
pandas
.
DataFrame
({
"
peptide
"
:
peptides
.
sequences
})
random_predictions_df
[
"
prediction
"
]
=
predictions
random_predictions_df
=
random_predictions_df
.
sort_values
(
"
prediction
"
,
ascending
=
True
)
#print("Random peptide predictions", allele)
#print(random_predictions_df)
top
=
random_predictions_df
.
iloc
[:
int
(
len
(
random_predictions_df
)
*
frac
)]
matrix
=
positional_frequency_matrix
(
top
.
peptide
.
values
)
#print("Matrix")
return
matrix
def
test_synthetic_allele_refinement
():
refine_allele
=
"
HLA-C*01:02
"
alleles
=
[
...
...
@@ -151,8 +266,10 @@ def test_synthetic_allele_refinement():
predictor
=
Class1LigandomePredictor
(
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
,
max_ensemble_size
=
1
,
max_epochs
=
100
,
patience
=
5
)
max_epochs
=
10
,
learning_rate
=
0.00001
,
patience
=
5
,
min_delta
=
0.0
)
allele_encoding
=
MultipleAlleleEncoding
(
experiment_names
=
[
"
experiment1
"
]
*
len
(
train_df
),
...
...
@@ -182,85 +299,115 @@ def test_synthetic_allele_refinement():
assert_allclose
(
pre_predictions
,
expected_pre_predictions
)
predictor
.
fit
(
peptides
=
train_df
.
peptide
.
values
,
labels
=
train_df
.
hit
.
values
,
allele_encoding
=
allele_encoding
)
motifs_history
=
[]
random_peptides_encodable
=
make_random_peptides
(
10000
,
[
9
])
predictions
=
predictor
.
predict
(
peptides
=
train_df
.
peptide
.
values
,
allele_encoding
=
allele_encoding
,
)
train_df
[
"
max_prediction
"
]
=
predictions
.
max
(
1
)
train_df
[
"
predicted_allele
"
]
=
pandas
.
Series
(
alleles
).
loc
[
predictions
.
argmax
(
1
).
flatten
(
)
].
values
def
update_motifs
():
for
allele
in
alleles
:
motif
=
make_motif
(
allele
,
random_peptides_encodable
)
motifs_history
.
append
((
allele
,
motif
))
print
(
predictions
)
metric_rows
=
[]
auc
=
roc_auc_score
(
train_df
.
hit
.
values
,
train_df
.
max_prediction
.
values
)
print
(
"
AUC
"
,
auc
)
def
progress
():
predictions
=
predictor
.
predict
(
peptides
=
train_df
.
peptide
.
values
,
allele_encoding
=
allele_encoding
,
)
import
ipdb
;
ipdb
.
set_trace
()
train_df
[
"
max_prediction
"
]
=
predictions
.
max
(
1
)
train_df
[
"
predicted_allele
"
]
=
pandas
.
Series
(
alleles
).
loc
[
predictions
.
argmax
(
1
).
flatten
()].
values
return
predictions
print
(
predictions
)
mean_predictions_for_hit
=
train_df
.
loc
[
train_df
.
hit
==
1.0
].
max_prediction
.
mean
()
mean_predictions_for_decoy
=
train_df
.
loc
[
train_df
.
hit
==
0.0
].
max_prediction
.
mean
()
correct_allele_fraction
=
(
train_df
.
loc
[
train_df
.
hit
==
1.0
].
predicted_allele
==
train_df
.
loc
[
train_df
.
hit
==
1.0
].
true_allele
).
mean
()
auc
=
roc_auc_score
(
train_df
.
hit
.
values
,
train_df
.
max_prediction
.
values
)
print
(
"
Mean prediction for hit
"
,
mean_predictions_for_hit
)
print
(
"
Mean prediction for decoy
"
,
mean_predictions_for_decoy
)
print
(
"
Correct predicted allele fraction
"
,
correct_allele_fraction
)
print
(
"
AUC
"
,
auc
)
"""
def test_simple_synethetic(
num_peptide_per_allele_and_length=100, lengths=[8,9,10,11]):
alleles = [
"
HLA-A*02:01
"
,
"
HLA-B*52:01
"
,
"
HLA-C*07:01
"
,
"
HLA-A*03:01
"
,
"
HLA-B*57:02
"
,
"
HLA-C*03:01
"
,
]
cutoff = PAN_ALLELE_MOTIFS_DF.cutoff_fraction.min()
peptides_and_alleles = []
for allele in alleles:
sub_df = PAN_ALLELE_MOTIFS_DF.loc[
(PAN_ALLELE_MOTIFS_DF.allele == allele) &
(PAN_ALLELE_MOTIFS_DF.cutoff_fraction == cutoff)
metric_rows
.
append
((
mean_predictions_for_hit
,
mean_predictions_for_decoy
,
correct_allele_fraction
,
auc
,
))
update_motifs
()
return
(
predictions
,
auc
)
print
(
"
Pre fitting:
"
)
progress
()
update_motifs
()
print
(
"
Fitting...
"
)
predictor
.
fit
(
peptides
=
train_df
.
peptide
.
values
,
labels
=
train_df
.
hit
.
values
,
allele_encoding
=
allele_encoding
,
progress_callback
=
progress
,
)
(
predictions
,
final_auc
)
=
progress
()
print
(
"
Final AUC
"
,
final_auc
)
update_motifs
()
motifs
=
pandas
.
DataFrame
(
motifs_history
,
columns
=
[
"
allele
"
,
"
motif
"
,
]
assert len(sub_df) > 0, allele
for length in lengths:
pssm = sub_df.loc[
sub_df.length == length
].set_index(
"
position
"
)[COMMON_AMINO_ACIDS]
peptides = sample_peptides_from_pssm(pssm, num_peptide_per_allele_and_length)
for peptide in peptides:
peptides_and_alleles.append((peptide, allele))
hits_df = pandas.DataFrame(
peptides_and_alleles,
columns=[
"
peptide
"
,
"
allele
"
]
)
hits_df[
"
hit
"
] = 1
decoys = hits_df.copy()
decoys[
"
peptide
"
] = decoys.peptide.map(scramble_peptide)
decoys[
"
hit
"
] = 0.0
metrics
=
pandas
.
DataFrame
(
metric_rows
,
columns
=
[
"
mean_predictions_for_hit
"
,
"
mean_predictions_for_decoy
"
,
"
correct_allele_fraction
"
,
"
auc
"
])
train_df = pandas.concat([hits_df, decoys], ignore_index=True)
#import ipdb ; ipdb.set_trace()
return
(
predictor
,
predictions
,
metrics
,
motifs
)
return train_df
return
pass
"""
parser
=
argparse
.
ArgumentParser
(
usage
=
__doc__
)
parser
.
add_argument
(
"
--alleles
"
,
nargs
=
"
+
"
,
"
--out-metrics-csv
"
,
default
=
None
,
help
=
"
Metrics output
"
)
parser
.
add_argument
(
"
--out-motifs-pickle
"
,
default
=
None
,
help
=
"
Which alleles to test
"
)
help
=
"
Metrics output
"
)
if
__name__
==
'
__main__
'
:
# If run directly from python, leave the user in a shell to explore results.
setup
()
args
=
parser
.
parse_args
(
sys
.
argv
[
1
:])
result
=
test_synthetic_allele_refinement
()
(
predictor
,
predictions
,
metrics
,
motifs
)
=
test_synthetic_allele_refinement
()
if
args
.
out_metrics_csv
:
metrics
.
to_csv
(
args
.
out_metrics_csv
)
if
args
.
out_motifs_pickle
:
motifs
.
to_pickle
(
args
.
out_motifs_pickle
)
# Leave in ipython
import
ipdb
# pylint: disable=import-error
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment