Newer
Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
import numpy as np
from .regression_target import regression_target_to_ic50, MAX_IC50
Tim O'Donnell
committed
from .affinity_measurement_dataset import AffinityMeasurementDataset
from .hyperparameters import HyperparameterDefaults
class IC50PredictorBase(object):
"""
Base class for all mhcflurry predictors which predict IC50 values
(using any representation of peptides)
"""
hyperparameter_defaults = HyperparameterDefaults(max_ic50=MAX_IC50)
def __init__(
self,
name,
verbose=False,
max_ic50=hyperparameter_defaults.defaults["max_ic50"]):
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
self.name = name
self.max_ic50 = max_ic50
self.verbose = verbose
def __repr__(self):
return "%s(name=%s, max_ic50=%f)" % (
self.__class__.__name__,
self.name,
self.max_ic50)
def __str__(self):
return repr(self)
def predict_scores(self, peptides, combine_fn=np.mean):
raise NotImplementedError(
"predict_scores expected to be implemented in sub-class")
def predict(self, peptides):
"""
Predict IC50 affinities for peptides of any length
"""
scores = self.predict_scores(peptides)
return regression_target_to_ic50(scores, max_ic50=self.max_ic50)
def fit_dictionary(self, peptide_to_ic50_dict, **kwargs):
"""
Fit the model parameters using the given peptide->IC50 dictionary,
all samples are given the same weight.
Parameters
----------
peptide_to_ic50_dict : dict
Dictionary that maps peptides to IC50 values.
"""
Tim O'Donnell
committed
dataset = AffinityMeasurementDataset.from_peptide_to_affinity_dictionary(
allele_name=self.name,
peptide_to_affinity_dict=peptide_to_ic50_dict)
return self.fit_dataset(dataset, **kwargs)
def fit_sequences(
self,
peptides,
affinities,
sample_weights=None,
alleles=None, **kwargs):
if alleles is None:
alleles = [self.name] * len(peptides)
Tim O'Donnell
committed
dataset = AffinityMeasurementDataset.from_sequences(
alleles=alleles,
peptides=peptides,
affinities=affinities,
sample_weights=sample_weights)
return self.fit_dataset(dataset, **kwargs)
def fit_dataset(self, dataset, pretraining_dataset=None, *args, **kwargs):
raise NotImplementedError(
"fit_dataset expected to be implemented in sub-class")