Skip to content
Snippets Groups Projects
create-iedb-class1-dataset.py 5.65 KiB
Newer Older
#!/usr/bin/env python

# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Turn a raw CSV snapshot of the IEDB contents into a usable
class I binding prediction dataset by grouping all unique pMHCs
"""
from collections import defaultdict
import pickle

import numpy as np
import pandas as pd

Tim O'Donnell's avatar
Tim O'Donnell committed
parser = argparse.ArgumentParser(usage=__doc__)
    required=True,
    help="CSV file with IEDB's MHC binding data.")
parser.add_argument(
    "--output-pickle-filename",
    required=True,
    help="Path to .pickle file containing dictionary of IEDB assay datasets.")
parser.add_argument(
    "--alleles",
Tim O'Donnell's avatar
Tim O'Donnell committed
    metavar="ALLELE",
    nargs="+",
    default=[],
    help="Restrict dataset to specified alleles")

def filter_class1_alleles(df):
    mhc_class = df["MHC"]["MHC allele class"]
    print("MHC class counts: \n%s" % (mhc_class.value_counts(),))
    class1_mask = mhc_class == "I"
    return df[class1_mask]

def filter_allele_names(df):
    alleles = df["MHC"]["Allele Name"]
    invalid_allele_mask = alleles.str.contains(" ") | alleles.str.contains("/")
    invalid_alleles = alleles[invalid_allele_mask]
    print("-- Invalid allele names: %s" % (list(sorted(set(invalid_alleles)))))
    print("Dropping %d with complex alleles (e.g. descriptions of mutations)" %
          len(invalid_alleles))
    return df[~invalid_allele_mask]

def filter_affinity_values(df):
    affinities = df["Assay"]["Quantitative measurement"]
    finite_affinity_mask = ~affinities.isnull() & np.isfinite(affinities)
    invalid_affinity_mask = ~finite_affinity_mask

    print("Dropping %d rows without finite affinity measurements" % (
        invalid_affinity_mask.sum(),))
    return df[finite_affinity_mask]

def filter_mhc_dataframe(df):
    filter_functions = [
        filter_class1_alleles,
        filter_allele_names,
        filter_affinity_values,

    for fn in filter_functions:
        df = fn(df)

    return df


def groupby_assay(df):
    assay_group = df["Assay"]["Assay Group"]
    assay_method = df["Assay"]["Method/Technique"]
    groups = df.groupby([assay_group, assay_method])

    # speed up repeated calls to np.log by caching log affinities as a column
    # in the dataframe
    df["_log_affinity"] = np.log(df["Assay"]["Quantitative measurement"])

    # speed up computing percent positive with the helper column
    qualitative = df["Assay"]["Qualitative Measure"]
    df["_qualitative_positive"] = qualitative.str.startswith("Positive")
    print("---")
    print("Assays")
    assay_dataframes = {}
    # create a dataframe for every distinct kind of assay which is used
    # by IEDB submitters to measure peptide-MHC affinity or stability
    for (assay_group, assay_method), group_data in sorted(
            groups,
            key=lambda x: len(x[1]),
            reverse=True):
        print("- %s (%s): %d" % (assay_group, assay_method, len(group_data)))
        group_alleles = group_data["MHC"]["Allele Name"]
        group_peptides = group_data["Epitope"]["Description"]
        distinct_pmhc = group_data.groupby([group_alleles, group_peptides])
        columns = defaultdict(list)
        for (allele, peptide), pmhc_group in distinct_pmhc:
            columns["mhc"].append(allele)
            columns["peptide"].append(peptide)
            positive = pmhc_group["_qualitative_positive"]
            count = len(pmhc_group)
            if count == 1:
                ic50 = pmhc_group["Assay"]["Quantitative measurement"].mean()
            else:
                ic50 = np.exp(np.mean(pmhc_group["_log_affinity"]))
            # averaging the log affinities preserves orders of magnitude better
            columns["value"].append(ic50)
            columns["percent_positive"].append(positive.mean())
            columns["count"].append(count)
        assay_dataframes[(assay_group, assay_method)] = pd.DataFrame(
            columns,
            columns=[
                "mhc",
                "peptide",
                "value",
                "percent_positive",
                "count"])
        print("# distinct pMHC entries: %d" % len(columns["mhc"]))
    return assay_dataframes

if __name__ == "__main__":
    args = parser.parse_args()
    df = pd.read_csv(
        args.input_csv,
        error_bad_lines=False,
        encoding="latin-1",
        header=[0, 1])

    df = filter_mhc_dataframe(df)

    alleles = df["MHC"]["Allele Name"]

    n = len(alleles)

    print("# Class I rows: %d" % n)
    print("# Class I alleles: %d" % len(set(alleles)))
    print("Unique alleles: %s" % list(sorted(set(alleles))))

    if args.alleles:
        print("User-supplied allele whitelist: %s" % (args.alleles,))
        mask = np.zeros(n, dtype=bool)
        for pattern in args.alleles:
            pattern_mask = alleles.str.startswith(pattern)
            print("# %s: %d" % (pattern, pattern_mask.sum()))
            mask |= pattern_mask
        df = df[mask]
        print("# entries matching alleles %s: %d" % (
            args.alleles,
            len(df)))

    assay_dataframes = groupby_assay(df)

    with open(args.output_pickle_filename, "wb") as f:
        pickle.dump(assay_dataframes, f, pickle.HIGHEST_PROTOCOL)