Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
"""
import argparse
import os
import signal
import sys
import time
import traceback
import math
from functools import partial
import numpy
import pandas
from mhcnames import normalize_allele_name
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from mhcflurry.common import configure_logging
from mhcflurry.local_parallelism import (
add_local_parallelism_args,
worker_pool_with_gpu_assignments_from_args,
call_wrapped_kwargs)
from mhcflurry.cluster_parallelism import (
add_cluster_parallelism_args,
cluster_results_from_args)
# To avoid pickling large matrices to send to child processes when running in
# parallel, we use this global variable as a place to store data. Data that is
# stored here before creating the thread pool will be inherited to the child
# processes upon fork() call, allowing us to share large data with the workers
# via shared memory.
GLOBAL_DATA = {}
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"input_peptides",
metavar="CSV",
help="CSV file with 'peptide' column")
parser.add_argument(
"--predictor",
required=True,
choices=("mhcflurry", "netmhcpan4"))
parser.add_argument(
"--mhcflurry-models-dir",
metavar="DIR",
help="Directory to read MHCflurry models")
parser.add_argument(
"--mhcflurry-batch-size",
type=int,
default=4096,
help="Keras batch size for MHCflurry predictions. Default: %(default)s")
parser.add_argument(
"--allele",
default=None,
required=True,
nargs="+",
help="Alleles to predict")
parser.add_argument(
"--chunk-size",
type=int,
default=100000,
help="Num peptides per job. Default: %(default)s")
parser.add_argument(
"--out",
metavar="DIR",
help="Write results to DIR")
parser.add_argument(
"--max-peptides",
type=int,
help="Max peptides to process. For debugging.",
default=None)
parser.add_argument(
"--reuse-predictions",
metavar="DIR",
help="Take predictions from indicated DIR instead of re-running them")
add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
PREDICTOR_TO_COLS = {
"mhcflurry": ["affinity"],
"netmhcpan4": ["affinity", "percentile_rank", "elution_score"],
}
manifest_df = pandas.read_csv(os.path.join(dirname, "alleles.csv"))
print(
"Loading results. Existing data has",
len(peptides),
"peptides and",
len(manifest_df),
"columns")
# Make adjustments for old style data. Can be removed later.
if "kind" not in manifest_df.columns:
manifest_df["kind"] = "affinity"
if "col" not in manifest_df.columns:
manifest_df["col"] = manifest_df.allele + " " + manifest_df.kind
if result_df is None:
result_df = pandas.DataFrame(
index=peptides, columns=manifest_df.col.values, dtype="float32")
result_df[:] = numpy.nan
else:
manifest_df = manifest_df.loc[manifest_df.col.isin(result_df.columns)]
mask = (peptides.isin(result_df.index)).values
peptides_to_assign = peptides[mask]
print("Will load", len(peptides), "peptides and", len(manifest_df), "cols")
for _, row in tqdm.tqdm(manifest_df.iterrows(), total=len(manifest_df)):
with open(os.path.join(dirname, row.path), "rb") as fd:
value = numpy.load(fd)['arr_0']
if mask is not None:
value = value[mask]
result_df.loc[peptides_to_assign, row.col] = value
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def blocks_of_ones(arr):
"""
Given a binary matrix, return indices of rectangular blocks of 1s.
Parameters
----------
arr : binary matrix
Returns
-------
List of (x1, y1, x2, y2) where all indices are INCLUSIVE. Each block spans
from (x1, y1) on its upper left corner to (x2, y2) on its lower right corner.
"""
arr = arr.copy()
blocks = []
while arr.sum() > 0:
(x1, y1) = numpy.unravel_index(arr.argmax(), arr.shape)
block = [x1, y1, x1, y1]
# Extend in first dimension as far as possible
down_stop = numpy.argmax(arr[x1:, y1] == 0) - 1
if down_stop == -1:
block[2] = arr.shape[0] - 1
else:
assert down_stop >= 0
block[2] = x1 + down_stop
# Extend in second dimension as far as possible
for i in range(y1, arr.shape[1]):
if (arr[block[0] : block[2] + 1, i] == 1).all():
block[3] = i
# Zero out block:
assert (
arr[block[0]: block[2] + 1, block[1] : block[3] + 1] == 1).all(), (arr, block)
arr[block[0] : block[2] + 1, block[1] : block[3] + 1] = 0
blocks.append(block)
return blocks
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
def run(argv=sys.argv[1:]):
global GLOBAL_DATA
# On sigusr1 print stack trace
print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid())
signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack())
args = parser.parse_args(argv)
configure_logging()
serial_run = not args.cluster_parallelism and args.num_jobs == 0
alleles = [normalize_allele_name(a) for a in args.allele]
alleles = sorted(set(alleles))
peptides = pandas.read_csv(
args.input_peptides, nrows=args.max_peptides).peptide.drop_duplicates()
print("Filtering to valid peptides. Starting at: ", len(peptides))
peptides = peptides[peptides.str.match("^[ACDEFGHIKLMNPQRSTVWY]+$")]
print("Filtered to: ", len(peptides))
peptides = peptides.unique()
num_peptides = len(peptides)
print("Predictions for %d alleles x %d peptides." % (
len(alleles), num_peptides))
if not os.path.exists(args.out):
print("Creating", args.out)
os.mkdir(args.out)
GLOBAL_DATA["predictor"] = args.predictor
# Write peptide and allele lists to out dir.
out_peptides = os.path.abspath(os.path.join(args.out, "peptides.csv"))
pandas.DataFrame({"peptide": peptides}).to_csv(out_peptides, index=False)
print("Wrote: ", out_peptides)
manifest_df = []
for allele in alleles:
manifest_df.append((allele, col))
manifest_df = pandas.DataFrame(
manifest_df, columns=["allele", "kind"])
manifest_df["col"] = (
manifest_df.allele + " " + manifest_df.kind)
manifest_df["path"] = manifest_df.col.map(
lambda s: s.replace("*", "").replace(" ", ".")) + ".npz"
out_manifest = os.path.abspath(os.path.join(args.out, "alleles.csv"))
manifest_df.to_csv(out_manifest, index=False)
col_to_filename = manifest_df.set_index("col").path.map(
lambda s: os.path.abspath(os.path.join(args.out, s)))
print("Wrote: ", out_manifest)
result_df = pandas.DataFrame(
result_df[:] = numpy.nan
if args.reuse_predictions:
if not dirname:
continue # ignore empty strings
if os.path.exists(dirname):
print("Loading predictions", dirname)
result_df = load_results(dirname, result_df)
else:
print("WARNING: skipping because does not exist", dirname)
is_null_matrix = pandas.DataFrame(
columns=alleles, index=result_df.index, dtype="int8")
for (allele, sub_df) in manifest_df.groupby("allele"):
is_null_matrix[allele] = result_df[sub_df.col.values].isnull().any(1)
print("Fraction null", is_null_matrix.values.mean())
print("Found %d blocks in %f sec." % (
len(blocks), (time.time() - start)))
work_items = []
for (row_index1, col_index1, row_index2, col_index2) in blocks:
block_peptides = result_df.index[row_index1 : row_index2 + 1]
print("Block: ", row_index1, col_index1, row_index2, col_index2)
num_chunks = int(math.ceil(len(block_peptides) / args.chunk_size))
print("Splitting peptides into %d chunks" % num_chunks)
peptide_chunks = numpy.array_split(peptides, num_chunks)
for chunk_peptides in peptide_chunks:
work_item = {
'alleles': block_alleles,
'peptides': chunk_peptides,
}
work_items.append(work_item)
else:
# Same number of chunks for all alleles
num_chunks = int(math.ceil(len(peptides) / args.chunk_size))
print("Splitting peptides into %d chunks" % num_chunks)
peptide_chunks = numpy.array_split(peptides, num_chunks)
work_items = []
work_item = {
'alleles': alleles,
'peptides': chunk_peptides,
}
work_items.append(work_item)
print("Work items: ", len(work_items))
for (i, work_item) in enumerate(work_items):
work_item["work_item_num"] = i
# Combine work items to form tasks.
tasks = []
peptides_in_last_task = None
# We sort work_items to put small items first so they get combined.
for work_item in sorted(work_items, key=lambda d: len(d['peptides'])):
if peptides_in_last_task is not None and (
len(work_item['peptides']) +
peptides_in_last_task < args.chunk_size):
# Add to last task.
tasks[-1]['work_item_dicts'].append(work_item)
peptides_in_last_task += len(work_item['peptides'])
else:
# New task
tasks.append({'work_item_dicts': [work_item]})
peptides_in_last_task = len(work_item['peptides'])
print("Collected %d work items into %d tasks" % (
len(work_items), len(tasks)))
if args.predictor == "mhcflurry":
do_predictions_function = do_predictions_mhcflurry
else:
do_predictions_function = do_predictions_mhctools
worker_pool = None
start = time.time()
if serial_run:
# Serial run
print("Running in serial.")
results = (
elif args.cluster_parallelism:
# Run using separate processes HPC cluster.
print("Running on cluster.")
results = cluster_results_from_args(
args,
constant_data=GLOBAL_DATA,
input_serialization_method="dill",
result_serialization_method="pickle",
clear_constant_data=True)
else:
worker_pool = worker_pool_with_gpu_assignments_from_args(args)
print("Worker pool", worker_pool)
assert worker_pool is not None
results = worker_pool.imap_unordered(
chunksize=1)
allele_to_chunk_index_to_predictions = {}
for allele in alleles:
allele_to_chunk_index_to_predictions[allele] = {}
last_write_time_per_column = dict((col, 0.0) for col in result_df.columns)
def write_col(col):
out_path = os.path.join(
args.out, col_to_filename[col])
numpy.savez(out_path, result_df[col].values)
print(
"Wrote [%f%% null]:" % (
result_df[col].isnull().mean() * 100.0),
out_path)
for worker_results in tqdm.tqdm(results, total=len(work_items)):
for (work_item_num, col_to_predictions) in worker_results:
for (col, predictions) in col_to_predictions.items():
result_df.loc[
work_items[work_item_num]['peptides'],
col
] = predictions
if time.time() - last_write_time_per_column[col] > 180:
write_col(col)
last_write_time_per_column[col] = time.time()
print("Done processing. Final write for each column.")
for col in result_df.columns:
write_col(col)
if worker_pool:
worker_pool.close()
worker_pool.join()
prediction_time = time.time() - start
print("Done generating predictions in %0.2f min." % (
prediction_time / 60.0))
def do_predictions_mhctools(work_item_dicts, constant_data=None):
"""
Each tuple of work items consists of:
(work_item_num, peptides, alleles)
"""
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import time
import numpy
import numpy.testing
import mhctools
if constant_data is None:
constant_data = GLOBAL_DATA
results = []
for (i, d) in enumerate(work_item_dicts):
work_item_num = d['work_item_num']
peptides = d['peptides']
alleles = d['alleles']
print("Processing work item", i + 1, "of", len(work_item_dicts))
result = {}
results.append((work_item_num, result))
if predictor_name == "netmhcpan4":
predictor = mhctools.NetMHCpan4(
alleles=alleles, program_name="netMHCpan-4.0")
else:
raise ValueError("Unsupported", predictor_name)
start = time.time()
df = predictor.predict_peptides_dataframe(peptides)
print("Predicted for %d peptides x %d alleles in %0.2f sec." % (
len(peptides), len(alleles), (time.time() - start)))
for (allele, sub_df) in df.groupby("allele"):
for col in cols:
result["%s %s" % (allele, col)] = (
sub_df[col].values.astype('float32'))
return results
def do_predictions_mhcflurry(work_item_dicts, constant_data=None):
"""
Each dict of work items should have keys: work_item_num, peptides, alleles
"""
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import time
from mhcflurry.encodable_sequences import EncodableSequences
from mhcflurry import Class1AffinityPredictor
if constant_data is None:
constant_data = GLOBAL_DATA
args = constant_data['args']
assert args.predictor == "mhcflurry"
predictor = Class1AffinityPredictor.load(args.mhcflurry_models_dir)
results = []
for (i, d) in enumerate(work_item_dicts):
work_item_num = d['work_item_num']
peptides = d['peptides']
alleles = d['alleles']
print("Processing work item", i + 1, "of", len(work_item_dicts))
result = {}
results.append((work_item_num, result))
start = time.time()
peptides = EncodableSequences.create(peptides)
for (i, allele) in enumerate(alleles):
print("Processing allele %d / %d: %0.2f sec elapsed" % (
i + 1, len(alleles), time.time() - start))
for col in ["affinity"]:
result["%s %s" % (allele, col)] = predictor.predict(
peptides=peptides,
allele=allele,
throw=False,
model_kwargs={
'batch_size': args.mhcflurry_batch_size,
}).astype('float32')
print("Done predicting in", time.time() - start, "sec")
return results