Skip to content
Snippets Groups Projects
Commit 9879d529 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

update

parent 4218150d
No related merge requests found
......@@ -16,7 +16,6 @@ from mhcnames import normalize_allele_name
import tqdm # progress bar
tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481
from mhcflurry.class1_affinity_predictor import Class1AffinityPredictor
from mhcflurry.common import configure_logging
from mhcflurry.local_parallelism import (
add_local_parallelism_args,
......@@ -43,7 +42,16 @@ parser.add_argument(
parser.add_argument(
"--predictor",
required=True,
choices=("netmhcpan4", "netmhcpan4-el"))
choices=("mhcflurry", "netmhcpan4"))
parser.add_argument(
"--mhcflurry-models-dir",
metavar="DIR",
help="Directory to read MHCflurry models")
parser.add_argument(
"--mhcflurry-batch-size",
type=int,
default=4096,
help="Keras batch size for MHCflurry predictions. Default: %(default)s")
parser.add_argument(
"--allele",
default=None,
......@@ -73,27 +81,79 @@ add_local_parallelism_args(parser)
add_cluster_parallelism_args(parser)
def load_results(dirname, result_df=None, col_names=None):
def load_results(dirname, result_df=None):
peptides = pandas.read_csv(
os.path.join(dirname, "peptides.csv")).peptide.values
os.path.join(dirname, "peptides.csv")).peptide
manifest_df = pandas.read_csv(os.path.join(dirname, "alleles.csv"))
if col_names:
manifest_df = manifest_df.loc[manifest_df.col.isin(col_names)]
print(
"Loading results. Existing data has",
len(peptides),
"peptides and",
len(manifest_df),
"columns")
if result_df is None:
result_df = pandas.DataFrame(
index=peptides, columns=manifest_df.col.values, dtype="float32")
result_df[:] = numpy.nan
else:
manifest_df = manifest_df.loc[manifest_df.col.isin(result_df.columns)]
peptides = peptides[peptides.isin(result_df.index)]
print("Will load", len(peptides), "peptides and", len(manifest_df), "cols")
for _, row in manifest_df.iterrows():
with open(os.path.join(dirname, row.path), "rb") as fd:
result_df.loc[
peptides, row.col
peptides.values, row.col
] = numpy.load(fd)['arr_0']
return result_df
def blocks_of_ones(arr):
"""
Given a binary matrix, return indices of rectangular blocks of 1s.
Parameters
----------
arr : binary matrix
Returns
-------
List of (x1, y1, x2, y2) where all indices are INCLUSIVE. Each block spans
from (x1, y1) on its upper left corner to (x2, y2) on its lower right corner.
"""
arr = arr.copy()
blocks = []
while arr.sum() > 0:
(x1, y1) = numpy.unravel_index(arr.argmax(), arr.shape)
block = [x1, y1, x1, y1]
# Extend in first dimension as far as possible
down_stop = numpy.argmax(arr[x1:, y1] == 0) - 1
if down_stop == -1:
block[2] = arr.shape[0] - 1
else:
assert down_stop >= 0
block[2] = x1 + down_stop
# Extend in second dimension as far as possible
for i in range(y1, arr.shape[1]):
if (arr[block[0] : block[2] + 1, i] == 1).all():
block[3] = i
# Zero out block:
assert (
arr[block[0]: block[2] + 1, block[1] : block[3] + 1] == 1).all(), (arr, block)
arr[block[0] : block[2] + 1, block[1] : block[3] + 1] = 0
blocks.append(block)
return blocks
def run(argv=sys.argv[1:]):
global GLOBAL_DATA
......@@ -125,8 +185,8 @@ def run(argv=sys.argv[1:]):
print("Creating", args.out)
os.mkdir(args.out)
GLOBAL_DATA["predictor"] = args.predictor
GLOBAL_DATA["args"] = args
# Write peptide and allele lists to out dir.
out_peptides = os.path.abspath(os.path.join(args.out, "peptides.csv"))
......@@ -150,11 +210,40 @@ def run(argv=sys.argv[1:]):
print("Wrote: ", out_manifest)
result_df = pandas.DataFrame(
index=peptides, columns=manifest_df.columns.values, dtype="float32")
index=peptides, columns=manifest_df.col.values, dtype="float32")
result_df[:] = numpy.nan
if args.reuse_predictions:
raise NotImplementedError()
print("Loading predictions", args.reuse_predictions)
result_df = load_results(args.reuse_predictions, result_df)
print("Existing data filled %f%% entries" % (
result_df.notnull().values.mean()))
# We rerun any alleles have nulls for any kind of values
# (affinity, percentile rank, elution score).
print("Computing blocks.")
start = time.time()
blocks = blocks_of_ones(result_df.isnull().values)
print("Found %d blocks in %f sec." % (
len(blocks), (time.time() - start)))
work_items = []
for (row_index1, col_index1, row_index2, col_index2) in blocks:
block_cols = result_df.columns[col_index1 : col_index2 + 1]
block_alleles = sorted(set([x.split()[0] for x in block_cols]))
block_peptides = result_df.index[row_index1 : row_index2 + 1]
print("Block: ", row_index1, col_index1, row_index2, col_index2)
num_chunks = int(math.ceil(len(block_peptides) / args.chunk_size))
print("Splitting peptides into %d chunks" % num_chunks)
peptide_chunks = numpy.array_split(peptides, num_chunks)
for chunk_peptides in peptide_chunks:
work_item = {
'alleles': block_alleles,
'peptides': chunk_peptides,
}
work_items.append(work_item)
else:
# Same number of chunks for all alleles
num_chunks = int(math.ceil(len(peptides) / args.chunk_size))
......@@ -162,7 +251,7 @@ def run(argv=sys.argv[1:]):
peptide_chunks = numpy.array_split(peptides, num_chunks)
work_items = []
for (chunk_index, chunk_peptides) in enumerate(peptide_chunks):
for (_, chunk_peptides) in enumerate(peptide_chunks):
work_item = {
'alleles': alleles,
'peptides': chunk_peptides,
......@@ -173,19 +262,24 @@ def run(argv=sys.argv[1:]):
for (i, work_item) in enumerate(work_items):
work_item["work_item_num"] = i
if args.predictor == "mhcflurry":
do_predictions_function = do_predictions_mhcflurry
else:
do_predictions_function = do_predictions_mhctools
worker_pool = None
start = time.time()
if serial_run:
# Serial run
print("Running in serial.")
results = (
do_predictions(**item) for item in work_items)
do_predictions_function(**item) for item in work_items)
elif args.cluster_parallelism:
# Run using separate processes HPC cluster.
print("Running on cluster.")
results = cluster_results_from_args(
args,
work_function=do_predictions,
work_function=do_predictions_function,
work_items=work_items,
constant_data=GLOBAL_DATA,
input_serialization_method="dill",
......@@ -196,7 +290,7 @@ def run(argv=sys.argv[1:]):
print("Worker pool", worker_pool)
assert worker_pool is not None
results = worker_pool.imap_unordered(
partial(call_wrapped_kwargs, do_predictions),
partial(call_wrapped_kwargs, do_predictions_function),
work_items,
chunksize=1)
......@@ -231,7 +325,7 @@ def run(argv=sys.argv[1:]):
prediction_time / 60.0))
def do_predictions(work_item_num, peptides, alleles, constant_data=None):
def do_predictions_mhctools(work_item_num, peptides, alleles, constant_data=None):
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import time
......@@ -242,7 +336,7 @@ def do_predictions(work_item_num, peptides, alleles, constant_data=None):
if constant_data is None:
constant_data = GLOBAL_DATA
predictor_name = constant_data['predictor']
predictor_name = constant_data['args'].predictor
if predictor_name == "netmhcpan4":
predictor = mhctools.NetMHCpan4(
alleles=alleles, program_name="netMHCpan-4.0")
......@@ -262,5 +356,37 @@ def do_predictions(work_item_num, peptides, alleles, constant_data=None):
return (work_item_num, results)
def do_predictions_mhcflurry(work_item_num, peptides, alleles, constant_data=None):
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import time
from mhcflurry.encodable_sequences import EncodableSequences
from mhcflurry import Class1AffinityPredictor
if constant_data is None:
constant_data = GLOBAL_DATA
args = constant_data['args']
assert args.predictor == "mhcflurry"
predictor = Class1AffinityPredictor.load(args.mhcflurry_models_dir)
start = time.time()
results = {}
peptides = EncodableSequences.create(peptides)
for (i, allele) in enumerate(alleles):
print("Processing allele %d / %d: %0.2f sec elapsed" % (
i + 1, len(alleles), time.time() - start))
for col in ["affinity"]:
results["%s %s" % (allele, col)] = predictor.predict(
peptides=peptides,
allele=allele,
throw=False,
model_kwargs={'batch_size': args.batch_size}).astype('float32')
print("Done predicting in", time.time() - start, "sec")
return (work_item_num, results)
if __name__ == '__main__':
run()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment