""" Idea: Fully convolutional network with softmax output. Let it take a 35mer: - N flank [10 aa] - peptide [7-15 aa] - C flank [10 aa] Train on monoallelic mass spec. Match positive examples (hits) to negatives from the same sample by finding unobserved peptides with as close as possible a match for predicted binding affinity. In final layer, take max cleavage score over peptide and the individual score for the position right before the peptide terminus. Compute the ratio of these. Or actually reverse of that. Hits get label 1, decoys get 0. For a hit with sequence NNNNNNNNNNPPPPPPPPPCCCCCCCCCC penalize on: [----------1000000000---------] For a decoy with same sequence, penalize it on: [----------0-----------------] Train separate models for N- and C-terminal cleavage. Issue: - it'll learn mass spec biases in the peptide Possible fix: - Also provide the amino acid counts of the peptide as auxiliary inputs. After training, set the cysteine value to 0. Architecture: architecture (for N terminal: for C terminal reverse the sequences): input of length S=25 [flank + left-aligned peptide] *** conv [vector of length S] *** *** [more convs and local pools] *** *** output [vector of length S] *** *** extract: position 10 and max of peptide positions [2-vector] *** concat:[position 10, max of peptide positions, number of Alananine, ..., number of Y in peptide] *** single dense node, softmax activation [1-vector] Train on monoallelic. Decoys are length-matched to hits and sampled from the same transcripts, selecting an unobeserved peptide with as close as possible the same predicted affinity. *** + repeat vector for each position *** conv *** *** conv *** *** ... conv n *** *** repeat vector for each position *** dense per-position *** output [35-vector] *** extract: position 10 and max of peptide positions [2-vector] *** dense *** output IDEA 2: - Two inputs: N-flank + peptide (left aligned), peptide (right alighted + C-flank - Bunch of convolutions - Global max pooling - Dense """ from __future__ import print_function import time import collections from six import string_types import numpy import pandas import mhcnames import hashlib from .hyperparameters import HyperparameterDefaults from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE from .encodable_sequences import EncodableSequences from .regression_target import from_ic50, to_ic50 from .random_negative_peptides import RandomNegativePeptides from .allele_encoding import MultipleAlleleEncoding, AlleleEncoding from .auxiliary_input import AuxiliaryInputEncoder from .batch_generator import BatchGenerator from .custom_loss import ( MSEWithInequalities, TransformPredictionsLossWrapper, MultiallelicMassSpecLoss) class Class1CleavageNeuralNetwork(object): network_hyperparameter_defaults = HyperparameterDefaults( amino_acid_encoding="BLOSUM62", peptide_max_length=15, n_flank_length=10, c_flank_length=10, vector_encoding_name="BLOSUM62", ) """ Hyperparameters (and their default values) that affect the neural network architecture. """ fit_hyperparameter_defaults = HyperparameterDefaults( max_epochs=500, validation_split=0.1, early_stopping=True ) """ Hyperparameters for neural network training. """ early_stopping_hyperparameter_defaults = HyperparameterDefaults( patience=5, min_delta=0.0, ) """ Hyperparameters for early stopping. """ compile_hyperparameter_defaults = HyperparameterDefaults( optimizer="rmsprop", learning_rate=None, ) """ Loss and optimizer hyperparameters. Any values supported by keras may be used. """ auxiliary_input_hyperparameter_defaults = HyperparameterDefaults( ) """ Allele feature hyperparameters. """ hyperparameter_defaults = network_hyperparameter_defaults.extend( fit_hyperparameter_defaults).extend( early_stopping_hyperparameter_defaults).extend( compile_hyperparameter_defaults).extend( auxiliary_input_hyperparameter_defaults) def __init__(self, **hyperparameters): self.hyperparameters = self.hyperparameter_defaults.with_defaults( hyperparameters) self.network = None self.fit_info = [] def fit( self, peptides, n_flanks, c_flanks, targets, sample_weights=None, shuffle_permutation=None, verbose=1, progress_callback=None, progress_preamble="", progress_print_interval=5.0): """ Parameters ---------- peptides n_flanks c_flanks targets : array of {0, 1} indicating hits (1) or decoys (0) Returns ------- """ import keras.backend as K peptides = EncodableSequences.create(peptides) n_flanks = EncodableSequences.create(n_flanks) c_flanks = EncodableSequences.create(c_flanks) x_list = self.peptides_and_flanking_to_network_input( peptides, n_flanks, c_flanks) # Shuffle if shuffle_permutation is None: shuffle_permutation = numpy.random.permutation(len(targets)) targets = targets[shuffle_permutation] assert numpy.isnan(targets).sum() == 0, targets if sample_weights is not None: sample_weights = numpy.array(sample_weights)[shuffle_permutation] x_list = [x[shuffle_permutation] for x in x_list] fit_info = collections.defaultdict(list) if self.network is None: self.network = self.make_network( **self.network_hyperparameter_defaults.subselect( self.hyperparameters)) if verbose > 0: self.network.summary() self.network.compile( loss="binary_crossentropy", optimizer=self.hyperparameters['optimizer']) last_progress_print = None min_val_loss_iteration = None min_val_loss = None start = time.time() for i in range(self.hyperparameters['max_epochs']): epoch_start = time.time() fit_history = self.network.fit( x_list, targets, validation_split=self.hyperparameters['validation_split'], shuffle=True, epochs=i + 1, sample_weight=sample_weights, initial_epoch=i, verbose=verbose) epoch_time = time.time() - epoch_start for (key, value) in fit_history.history.items(): fit_info[key].extend(value) # Print progress no more often than once every few seconds. if progress_print_interval is not None and ( not last_progress_print or ( time.time() - last_progress_print > progress_print_interval)): print((progress_preamble + " " + "Epoch %3d / %3d [%0.2f sec]: loss=%g. " "Min val loss (%s) at epoch %s" % ( i, self.hyperparameters['max_epochs'], epoch_time, fit_info['loss'][-1], str(min_val_loss), min_val_loss_iteration)).strip()) last_progress_print = time.time() if self.hyperparameters['validation_split']: val_loss = fit_info['val_loss'][-1] if min_val_loss is None or ( val_loss < min_val_loss - self.hyperparameters['min_delta']): min_val_loss = val_loss min_val_loss_iteration = i if self.hyperparameters['early_stopping']: threshold = ( min_val_loss_iteration + self.hyperparameters['patience']) if i > threshold: if progress_print_interval is not None: print((progress_preamble + " " + "Stopping at epoch %3d / %3d: loss=%g. " "Min val loss (%g) at epoch %s" % ( i, self.hyperparameters['max_epochs'], fit_info['loss'][-1], ( min_val_loss if min_val_loss is not None else numpy.nan), min_val_loss_iteration)).strip()) break if progress_callback: progress_callback() fit_info["time"] = time.time() - start fit_info["num_points"] = len(peptides) self.fit_info.append(dict(fit_info)) def predict( self, peptides, n_flanks, c_flanks, batch_size=DEFAULT_PREDICT_BATCH_SIZE): """ """ x_list = self.peptides_and_flanking_to_network_input( peptides, n_flanks, c_flanks) raw_predictions = self.network.predict( x_list, batch_size=batch_size) predictions = numpy.array(raw_predictions, dtype="float64") return predictions def peptides_and_flanking_to_network_input(self, peptides, n_flanks, c_flanks): """ Encode peptides to the fixed-length encoding expected by the neural network (which depends on the architecture). Parameters ---------- peptides : EncodableSequences or list of string Returns ------- numpy.array """ peptides = EncodableSequences.create(peptides) n_flanks = EncodableSequences.create(n_flanks) c_flanks = EncodableSequences.create(c_flanks) peptide_encoded1 = peptides.variable_length_to_fixed_length_vector_encoding( vector_encoding_name=self.hyperparameters['vector_encoding_name'], max_length=self.hyperparameters['peptide_max_length'], alignment_method='right_pad') peptide_encoded2 = peptides.variable_length_to_fixed_length_vector_encoding( vector_encoding_name=self.hyperparameters['vector_encoding_name'], max_length=self.hyperparameters['peptide_max_length'], alignment_method='left_pad') n_flanks_encoded = n_flanks.variable_length_to_fixed_length_vector_encoding( vector_encoding_name=self.hyperparameters['vector_encoding_name'], max_length=self.hyperparameters['n_flank_length'], alignment_method='right_pad') c_flanks_encoded = c_flanks.variable_length_to_fixed_length_vector_encoding( vector_encoding_name=self.hyperparameters['vector_encoding_name'], max_length=self.hyperparameters['c_flank_length'], alignment_method='left_pad') return [ peptide_encoded1, peptide_encoded2, n_flanks_encoded, c_flanks_encoded ] def make_network( self, amino_acid_encoding, peptide_max_length, n_flank_length, c_flank_length, vector_encoding_name): """ Helper function to make a keras network """ # We import keras here to avoid tensorflow debug output, etc. unless we # are actually about to use Keras. from keras.layers import Input import keras.layers import keras.layers.pooling from keras.layers.core import Dense, Flatten, Dropout from keras.layers.embeddings import Embedding from keras.layers.normalization import BatchNormalization from keras.layers.merge import Concatenate import keras.backend as K (peptides_empty, _, n_flanks_empty, c_flanks_empty) = ( self.peptides_and_flanking_to_network_input( peptides=[], n_flanks=[], c_flanks=[])) print((peptides_empty, _, n_flanks_empty, c_flanks_empty)) #import ipdb ; ipdb.set_trace() peptide_input1 = Input( shape=peptides_empty.shape[1:], dtype='float32', name='peptide1') peptide_input2 = Input( shape=peptides_empty.shape[1:], dtype='float32', name='peptide2') n_flank_input = Input( shape=n_flanks_empty.shape[1:], dtype='float32', name='n_flank') c_flank_input = Input( shape=c_flanks_empty.shape[1:], dtype='float32', name='c_flank') inputs = [peptide_input1, peptide_input2, n_flank_input, c_flank_input] sub_networks = [] for input_pair in [(n_flank_input, peptide_input1), (peptide_input2, c_flank_input)]: # need to stack them together current_layer = Concatenate(axis=1)(list(input_pair)) for i in range(1): current_layer = keras.layers.Conv1D( filters=int(16 / 2**i), kernel_size=8, activation="tanh")(current_layer) #current_layer = keras.layers.pooling.MaxPooling1D( # pool_size=4)(current_layer) #current_layer = Flatten()(current_layer) sub_networks.append(current_layer) extracted_layers = [] extracted_layers.append( keras.layers.Lambda(lambda x: x[:, n_flank_length])(sub_networks[0])) peptide_n_cleavage = keras.layers.Lambda( lambda x: x[ :, (n_flank_length + 1) : ])(sub_networks[0]) extracted_layers.append( keras.layers.pooling.GlobalMaxPooling1D()(peptide_n_cleavage)) extracted_layers.append( keras.layers.Lambda( lambda x: x[:, peptide_max_length])(sub_networks[1])) peptide_c_cleavage = keras.layers.Lambda( lambda x: x[ :, 0 : peptide_max_length ])(sub_networks[1]) extracted_layers.append( keras.layers.pooling.GlobalMaxPooling1D()(peptide_c_cleavage)) current_layer = Concatenate()(extracted_layers) output = Dense( 1, activation="sigmoid", name="output")(current_layer) model = keras.models.Model( inputs=inputs, outputs=[output], name="predictor") return model