Newer
Older
import collections
import logging
import numpy
import pandas
import keras.models
import keras.layers.pooling
import keras.regularizers
from keras.layers import Input
import keras.layers.merge
from keras.layers.core import Dense, Flatten, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from mhcflurry.hyperparameters import HyperparameterDefaults
from ..encodable_sequences import EncodableSequences
from ..regression_target import to_ic50, from_ic50
from ..common import random_peptides, amino_acid_distribution
network_hyperparameter_defaults = HyperparameterDefaults(
kmer_size=15,
use_embedding=True,
embedding_input_dim=21,
embedding_output_dim=8,
pseudosequence_use_embedding=True,
layer_sizes=[32],
dense_layer_l1_regularization=0.0,
dense_layer_l2_regularization=0.0,
activation="tanh",
init="glorot_uniform",
output_activation="sigmoid",
dropout_probability=0.0,
batch_normalization=True,
embedding_init_method="glorot_uniform",
locally_connected_layers=[],
)
compile_hyperparameter_defaults = HyperparameterDefaults(
loss="mse",
optimizer="rmsprop",
)
input_encoding_hyperparameter_defaults = HyperparameterDefaults(
left_edge=4,
right_edge=4)
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=250,
validation_split=None,
early_stopping=False,
take_best_epoch=False,
random_negative_rate=0.0,
random_negative_constant=0,
random_negative_affinity_min=50000.0,
random_negative_affinity_max=50000.0,
random_negative_match_distribution=True,
random_negative_distribution_smoothing=0.0)
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
monitor='val_loss',
min_delta=0,
patience=0,
verbose=1,
mode='auto')
hyperparameter_defaults = network_hyperparameter_defaults.extend(
input_encoding_hyperparameter_defaults).extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults)
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
self.network = None
result = dict(self.__dict__)
del result['network']
result['network_json'] = self.network.to_json()
return result
@classmethod
def from_config(cls, config):
config = dict(config)
instance = cls(**config.pop('hyperparameters'))
instance.network = keras.models.model_from_json(
config.pop('network_json'))
instance.__dict__.update(config)
return instance
def __getstate__(self):
result = self.get_config()
result['network_weights'] = self.get_weights()
return result
def __setstate__(self, state):
network_json = state.pop('network_json')
network_weights = state.pop('network_weights')
self.__dict__.update(state)
self.network = keras.models.model_from_json(network_json)
self.set_weights(network_weights)
def save_weights(self, filename):
weights_list = self.network.get_weights()
numpy.savez(
filename,
**dict((("array_%d" % i), w) for (i, w) in enumerate(weights_list)))
def restore_weights(self, filename):
loaded = numpy.load(filename)
weights = [
loaded["array_%d" % i]
for i in range(len(loaded.keys()))
]
loaded.close()
self.network.set_weights(weights)
def peptides_to_network_input(self, peptides):
encoder = EncodableSequences.create(peptides)
if self.hyperparameters['use_embedding']:
encoded = encoder.variable_length_to_fixed_length_categorical(
max_length=self.hyperparameters['kmer_size'],
**self.input_encoding_hyperparameter_defaults.subselect(
self.hyperparameters))
else:
encoded = encoder.variable_length_to_fixed_length_one_hot(
max_length=self.hyperparameters['kmer_size'],
**self.input_encoding_hyperparameter_defaults.subselect(
self.hyperparameters))
assert len(encoded) == len(peptides)
return encoded
def pseudosequence_to_network_input(self, pseudosequences):
encoder = EncodableSequences.create(pseudosequences)
if self.hyperparameters['pseudosequence_use_embedding']:
encoded = encoder.fixed_length_categorical()
encoded = encoder.fixed_length_one_hot()
assert len(encoded) == len(pseudosequences)
return encoded
def fit(
self,
peptides,
affinities,
allele_pseudosequences=None,
sample_weights=None,
verbose=1):
encodable_peptides = EncodableSequences.create(peptides)
peptide_encoding = self.peptides_to_network_input(encodable_peptides)
length_counts = (
pandas.Series(encodable_peptides.sequences)
.str.len().value_counts().to_dict())
num_random_negative = {}
for length in range(8, 16):
num_random_negative[length] = int(
length_counts.get(length, 0) *
self.hyperparameters['random_negative_rate'] +
self.hyperparameters['random_negative_constant'])
num_random_negative = pandas.Series(num_random_negative)
logging.info("Random negative counts per length:\n%s" % (
str(num_random_negative)))
aa_distribution = None
if self.hyperparameters['random_negative_match_distribution']:
aa_distribution = amino_acid_distribution(
encodable_peptides.sequences,
smoothing=self.hyperparameters[
'random_negative_distribution_smoothing'])
"Using amino acid distribution for random negative:\n%s" % (
str(aa_distribution)))
y_values = from_ic50(affinities)
assert numpy.isnan(y_values).sum() == 0, numpy.isnan(y_values).sum()
x_dict_without_random_negatives = {
'peptide': peptide_encoding,
}
pseudosequence_length = None
if allele_pseudosequences is not None:
pseudosequences_input = self.pseudosequence_to_network_input(
allele_pseudosequences)
pseudosequence_length = len(pseudosequences_input[0])
x_dict_without_random_negatives['pseudosequence'] = (
pseudosequences_input)
if self.network is None:
self.network = self.make_network(
pseudosequence_length=pseudosequence_length,
**self.network_hyperparameter_defaults.subselect(
self.hyperparameters))
y_dict_with_random_negatives = {
"output": numpy.concatenate([
from_ic50(
numpy.random.uniform(
self.hyperparameters[
'random_negative_affinity_min'],
self.hyperparameters[
'random_negative_affinity_max'],
int(num_random_negative.sum()))),
y_values,
]),
}
if sample_weights is not None:
sample_weights_with_random_negatives = numpy.concatenate([
numpy.ones(int(num_random_negative.sum())),
sample_weights])
val_losses = []
min_val_loss_iteration = None
min_val_loss = None
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
random_negative_peptides_list = []
for (length, count) in num_random_negative.items():
random_negative_peptides_list.extend(
random_peptides(
count,
length=length,
distribution=aa_distribution))
random_negative_peptides_encodable = (
EncodableSequences.create(
random_negative_peptides_list))
random_negative_peptides_encoding = (
self.peptides_to_network_input(
random_negative_peptides_encodable))
x_dict_with_random_negatives = {
"peptide": numpy.concatenate([
random_negative_peptides_encoding,
peptide_encoding,
]) if len(random_negative_peptides_encoding) > 0
else peptide_encoding
}
if pseudosequence_length:
# TODO: add random pseudosequences for random negative peptides
raise NotImplemented(
"Allele pseudosequences unsupported with random negatives")
fit_history = self.network.fit(
x_dict_with_random_negatives,
y_dict_with_random_negatives,
shuffle=True,
verbose=verbose,
epochs=1,
validation_split=self.hyperparameters[
'validation_split'],
sample_weight=sample_weights)
for (key, value) in fit_history.history.items():
logging.info(
"Epoch %3d / %3d: loss=%g. Min val loss at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
if self.hyperparameters['validation_split']:
val_losses.append(val_loss)
if min_val_loss is None or val_loss <= min_val_loss:
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
logging.info("Early stopping")
break
self.fit_seconds = time.time() - start
def predict(self, peptides, allele_pseudosequences=None):
x_dict = {
'peptide': self.peptides_to_network_input(peptides)
}
if allele_pseudosequences is not None:
pseudosequences_input = self.pseudosequence_to_network_input(
allele_pseudosequences)
x_dict['pseudosequence'] = pseudosequences_input
(predictions,) = numpy.array(self.network.predict(x_dict)).T
return to_ic50(predictions)
def compile(self):
self.network.compile(
**self.compile_hyperparameter_defaults.subselect(
self.hyperparameters))
@staticmethod
def make_network(
pseudosequence_length,
kmer_size,
use_embedding,
embedding_input_dim,
embedding_output_dim,
pseudosequence_use_embedding,
layer_sizes,
dense_layer_l1_regularization,
dense_layer_l2_regularization,
activation,
init,
output_activation,
dropout_probability,
batch_normalization,
embedding_init_method,
if use_embedding:
peptide_input = Input(
shape=(kmer_size,), dtype='int32', name='peptide')
current_layer = Embedding(
input_dim=embedding_input_dim,
output_dim=embedding_output_dim,
input_length=kmer_size,
embeddings_initializer=embedding_init_method)(peptide_input)
else:
peptide_input = Input(
shape=(kmer_size, 21), dtype='float32', name='peptide')
current_layer = peptide_input
for locally_connected_params in locally_connected_layers:
current_layer = keras.layers.LocallyConnected1D(
**locally_connected_params)(current_layer)
current_layer = Flatten()(current_layer)
current_layer = BatchNormalization()(current_layer)
current_layer = Dropout(dropout_probability)(current_layer)
if pseudosequence_length:
if pseudosequence_use_embedding:
pseudosequence_input = Input(
shape=(pseudosequence_length,),
dtype='int32',
name='pseudosequence')
pseudo_embedding_layer = Embedding(
input_dim=embedding_input_dim,
output_dim=embedding_output_dim,
input_length=pseudosequence_length,
embeddings_initializer=embedding_init_method)(
pseudosequence_input)
else:
pseudosequence_input = Input(
shape=(pseudosequence_length, 21),
dtype='float32', name='peptide')
pseudo_embedding_layer = pseudosequence_input
inputs.append(pseudosequence_input)
pseudo_embedding_layer = Flatten()(pseudo_embedding_layer)
current_layer = keras.layers.concatenate([
current_layer, pseudo_embedding_layer
])
for layer_size in layer_sizes:
kernel_regularizer = None
l1 = dense_layer_l1_regularization
l2 = dense_layer_l2_regularization
if l1 > 0 or l2 > 0:
kernel_regularizer = keras.regularizers.l1_l2(l1, l2)
current_layer = Dense(
kernel_regularizer=kernel_regularizer)(current_layer)
current_layer = BatchNormalization()(current_layer)
if dropout_probability > 0:
current_layer = Dropout(dropout_probability)(current_layer)
output = Dense(
1,
kernel_initializer=init,
activation=output_activation,
name="output")(current_layer)
model = keras.models.Model(inputs=inputs, outputs=[output])