Skip to content
Snippets Groups Projects
Commit fbbef344 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

update

parent 053361ea
No related branches found
No related tags found
No related merge requests found
......@@ -73,13 +73,12 @@ class Class1NeuralNetwork(object):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
self.network = None
self.fit_history = None
self.loss_history = None
self.fit_seconds = None
def __getstate__(self):
result = dict(self.__dict__)
del result['network']
result['fit_history'] = None
result['network_json'] = self.network.to_json()
result['network_weights'] = self.get_weights()
return result
......@@ -204,7 +203,7 @@ class Class1NeuralNetwork(object):
min_val_loss_iteration = None
min_val_loss = None
self.fit_history = collections.defaultdict(list)
self.loss_history = collections.defaultdict(list)
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
random_negative_peptides_list = []
......@@ -243,17 +242,17 @@ class Class1NeuralNetwork(object):
sample_weight=sample_weights)
for (key, value) in fit_history.history.items():
self.fit_history[key].extend(value)
self.loss_history[key].extend(value)
logging.info(
"Epoch %3d / %3d: loss=%g. Min val loss at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
self.fit_history['loss'][-1],
self.loss_history['loss'][-1],
min_val_loss_iteration))
if self.hyperparameters['validation_split']:
val_loss = fit_history.history['val_loss'][-1]
val_loss = self.loss_history['val_loss'][-1]
val_losses.append(val_loss)
if min_val_loss is None or val_loss <= min_val_loss:
......
......@@ -16,6 +16,7 @@ import mhcnames
from .class1_neural_network import Class1NeuralNetwork
from ..common import configure_logging
def normalize_allele_name(s):
try:
return mhcnames.normalize_allele_name(s)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment