Skip to content
Snippets Groups Projects
readme.template.rst 5.9 KiB
Newer Older
.. include:: /intro.rst
Tim O'Donnell's avatar
Tim O'Donnell committed
    :start-line: 3

.. include:: /commandline_tutorial.rst
Tim O'Donnell's avatar
Tim O'Donnell committed

.. include:: /python_tutorial.rst
Tim O'Donnell's avatar
Tim O'Donnell committed

.. include:: /models_supported_alleles.rst

mhcflurry
=========

Open source neural network models for peptide-MHC binding affinity
prediction

The `adaptive immune
system <https://en.wikipedia.org/wiki/Adaptive_immune_system>`__ depends
on the presentation of protein fragments by
`MHC <https://en.wikipedia.org/wiki/Major_histocompatibility_complex>`__
molecules. Machine learning models of this interaction are used in
studies of infectious diseases, autoimmune diseases, vaccine
development, and cancer immunotherapy.

MHCflurry supports Class I peptide/MHC binding affinity prediction using
ensembles of allele-specific models. You can fit MHCflurry models to
your own data or download models that we fit to data from
`IEDB <http://www.iedb.org/home_v3.php>`__ and `Kim
2014 <http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-241>`__.
Our combined dataset is available for download
`here <https://github.com/hammerlab/mhcflurry/releases/download/pre-1.0.0-alpha/data_curated.tar.bz2>`__.

Pan-allelic prediction is supported in principle but is not yet
performing accurately. Infrastructure for modeling other aspects of
antigen processing is also implemented but experimental.

If you find MHCflurry useful in your research please cite:

    O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
    binding affinity prediction. bioRxiv. Available at:
    http://www.biorxiv.org/content/early/2017/08/09/174243.

Setup (pip)
-----------

Install the package:

::

    pip install mhcflurry

Then download our datasets and trained models:

::

    mhcflurry-downloads fetch

From a checkout you can run the unit tests with:

::

    nosetests .

The MHCflurry predictors are implemented in Python using
`keras <https://keras.io>`__.

MHCflurry works with both the tensorflow and theano keras backends. The
tensorflow backend gives faster model-loading time but is undergoing
more rapid development and sometimes hits issues. If you encounter
tensorflow errors running MHCflurry, try setting this environment
variable to switch to the theano backend:

::

    export KERAS_BACKEND=theano

You may also needs to ``pip install theano``.

Setup (conda)
-------------

You can alternatively get up and running with a
`conda <https://conda.io/docs/>`__ environment as follows:

::

    conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.0'
    source activate mhcflurry-env

Then continue as above:

::

    pip install mhcflurry
    mhcflurry-downloads fetch

If you wish to test your installation, you can install ``nose`` and run
the tests from a checkout:

::

    pip install nose
    nosetests .

Making predictions from the command-line
----------------------------------------

.. code:: shell

    $ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
    allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
    HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
    HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
    HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
    HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
    HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
    HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705

The predictions returned are affinities (KD) in nM. The
``prediction_low`` and ``prediction_high`` fields give the 5-95
percentile predictions across the models in the ensemble. The
predictions above were generated with MHCflurry 0.9.2. Your exact
predictions may vary slightly from these (up to about 1 nM) depending on
the Keras backend in use and other numerical details. Different versions
of MHCflurry can of course give results considerably different from
these.

You can also specify the input and output as CSV files. Run
``mhcflurry-predict -h`` for details.

Making predictions from Python
------------------------------

.. code:: python

    >>> from mhcflurry import Class1AffinityPredictor
    >>> predictor = Class1AffinityPredictor.load()
    >>> predictor.predict_to_dataframe(peptides=['SIINFEKL'], allele='A0201')


      allele   peptide   prediction  prediction_low  prediction_high
      A0201  SIINFEKL  6029.084473     4474.103253      7771.297702

See the
`class1_allele_specific_models.ipynb <https://github.com/hammerlab/mhcflurry/blob/master/examples/class1_allele_specific_models.ipynb>`__
notebook for an overview of the Python API, including fitting your own
predictors.

Scanning protein sequences for predicted epitopes
-------------------------------------------------

The `mhctools <https://github.com/hammerlab/mhctools>`__ package
provides support for scanning protein sequences to find predicted
epitopes. It supports MHCflurry as well as other binding predictors.
Here is an example:

::

    # First install mhctools if needed:
    pip install mhctools

    # Now generate predictions for protein sequences in FASTA format:
    mhctools \
        --mhc-predictor mhcflurry \
        --input-fasta-file INPUT.fasta \
        --mhc-alleles A02:01,A03:01 \
        --mhc-peptide-lengths 8,9,10,11 \
        --extract-subsequences \
        --out RESULT.csv

Details on the downloadable models
----------------------------------

Environment variables
---------------------

The path where MHCflurry looks for model weights and data can be set
with the ``MHCFLURRY_DOWNLOADS_DIR`` environment variable. This
directory should contain subdirectories like "models_class1".

.. |Build Status| image:: https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master
   :target: https://travis-ci.org/hammerlab/mhcflurry
.. |Coverage Status| image:: https://coveralls.io/repos/github/hammerlab/mhcflurry/badge.svg?branch=master
   :target: https://coveralls.io/github/hammerlab/mhcflurry?branch=master