Skip to content
Snippets Groups Projects
Commit d6d0fc9a authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

update readme; remove pandoc from setup.py

parent 2aa3ed5d
No related branches found
No related tags found
No related merge requests found
......@@ -63,15 +63,11 @@ generate:
# Added by Tim:
.PHONY: readme
readme: text
rm -f package_readme/readme.generated.rst
cat package_readme/readme_header.rst \
_build/text/package_readme/readme.template.txt \
> package_readme/readme.generated.rst
#pandoc -B package_readme/readme_header.rst \
# -f rst \
# -t rst \
# --base-header-level 2 \
# _build/text/package_readme/readme.template.txt \
# -o package_readme/readme.generated.rst
chmod 444 package_readme/readme.generated.rst # read only
.PHONY: clean
clean:
......
......@@ -27,6 +27,7 @@ be customized with the ``--models`` argument. See ``mhcflurry-predict -h`` for
details.
.. command-output:: mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
:nostderr:
The predictions returned are affinities (KD) in nM. The ``prediction_low`` and
``prediction_high`` fields give the 5-95 percentile predictions across
......@@ -43,3 +44,39 @@ You can also specify the input and output as CSV files. Run
Fitting your own models
-----------------------
Scanning protein sequences for predicted epitopes
-------------------------------------------------
The `mhctools <https://github.com/hammerlab/mhctools>`__ package
provides support for scanning protein sequences to find predicted
epitopes. It supports MHCflurry as well as other binding predictors.
Here is an example.
First, install ``mhctools`` if it is not already installed:
.. code:: shell
$ pip install mhctools
We'll generate predictions across ``example.fasta``, a FASTA file with two short
sequences:
.. literalinclude:: /example.fasta
Here's the ``mhctools`` invocation. See ``mhctools -h`` for more information.
.. command-output::
mhctools
--mhc-predictor mhcflurry
--input-fasta-file example.fasta
--mhc-alleles A02:01,A03:01
--mhc-peptide-lengths 8,9,10,11
--extract-subsequences
--output-csv /tmp/result.csv
:ellipsis: 2,-2
:nostderr:
This will write a file giving predictions for all subsequences of the specified lengths:
.. command-output::
head -n 3 /tmp/result.csv
......@@ -80,6 +80,9 @@ release = version
# Added by tim
autodoc_member_order = 'bysource'
# Added by tim
suppress_warnings = ['image.nonlocal_uri']
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
......
>protein1
MDSKGSSQKGSRLLLLLVVSNLLLCQGVVSTPVCPNGPGNCQV
EMFNEFDKRYAQGKGFITMALNSCHTSSLPTPEDKEQAQQTHH
>protein2
VTEVRGMKGAPDAILSRAIEIEEENKRLLEGMEMIFGQVIPGA
ARYSAFYNLLHCLRRDSSKIDTYLKLLNCRIIYNNNC
"""
Generate models report.
Generate certain RST files used in documentation.
"""
import sys
......
:orphan:
.. image:: https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master
:target: https://travis-ci.org/hammerlab/mhcflurry
......@@ -15,7 +17,7 @@ open source implementation.
You can download pre-trained MHCflurry models fit to affinity
measurements deposited in IEDB. See the
"downloads_generation/models_class1" directory in the repository for
downloads_generation/models_class1 directory in the repository for
the workflow used to train these predictors. Users with their own data
can also fit their own MHCflurry models.
......@@ -30,7 +32,7 @@ GPUs may optionally be used for a generally modest speed improvement.
If you find MHCflurry useful in your research please cite:
O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
ODonnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
......@@ -79,7 +81,7 @@ Most users will use pre-trained MHCflurry models that we release.
These models are distributed separately from the source code and may
be downloaded with the following command:
We also release other "downloads," such as curated training data and
We also release other downloads, such as curated training data and
some experimental models. To see what you have downloaded, run:
......@@ -92,8 +94,6 @@ downloaded above but this can be customized with the "--models"
argument. See "mhcflurry-predict -h" for details.
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
2017-12-21 13:15:45.075649: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
Using TensorFlow backend.
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high,mhcflurry_prediction_percentile
HLA-A0201,SIINFEKL,4899.047843425702,2767.7636539507857,7269.683642935029,6.509787499999997
HLA-A0201,SIINFEKD,21050.420242970613,16834.65859138968,24129.046091695887,34.297175
......@@ -120,6 +120,52 @@ Fitting your own models
***********************
Scanning protein sequences for predicted epitopes
*************************************************
The mhctools package provides support for scanning protein sequences
to find predicted epitopes. It supports MHCflurry as well as other
binding predictors. Here is an example.
First, install "mhctools" if it is not already installed:
$ pip install mhctools
We’ll generate predictions across "example.fasta", a FASTA file with
two short sequences:
>protein1
MDSKGSSQKGSRLLLLLVVSNLLLCQGVVSTPVCPNGPGNCQV
EMFNEFDKRYAQGKGFITMALNSCHTSSLPTPEDKEQAQQTHH
>protein2
VTEVRGMKGAPDAILSRAIEIEEENKRLLEGMEMIFGQVIPGA
ARYSAFYNLLHCLRRDSSKIDTYLKLLNCRIIYNNNC
Here’s the "mhctools" invocation. See "mhctools -h" for more
information.
$ mhctools
--mhc-predictor mhcflurry
--input-fasta-file example.fasta
--mhc-alleles A02:01,A03:01
--mhc-peptide-lengths 8,9,10,11
--extract-subsequences
--output-csv /tmp/result.csv
2017-12-21 14:13:47,847 - mhctools.cli.args - INFO - Building MHC binding prediction type for alleles ['HLA-A*02:01', 'HLA-A*03:01'] and epitope lengths [8, 9, 10, 11]
2017-12-21 14:13:52,753 - mhctools.cli.script - INFO -
...
[1192 rows x 8 columns]
Wrote: /tmp/result.csv
This will write a file giving predictions for all subsequences of the
specified lengths:
$ head -n 3 /tmp/result.csv
source_sequence_name,offset,peptide,allele,affinity,percentile_rank,prediction_method_name,length
protein2,42,AARYSAFY,HLA-A*02:01,33829.639361000336,73.7865875,mhcflurry,8
protein2,42,AARYSAFYN,HLA-A*02:01,29747.41688667342,60.34871249999998,mhcflurry,9
Library usage
=============
......@@ -326,3 +372,153 @@ peptides of length 8-15 and the following 124 alleles:
Mamu-B*17:04, Mamu-B*39:01, Mamu-B*52:01, Mamu-B*66:01, Mamu-B*83:01,
Mamu-B*87:01, Patr-A*01:01, Patr-A*03:01, Patr-A*04:01, Patr-A*07:01,
Patr-A*09:01, Patr-B*01:01, Patr-B*13:01, Patr-B*24:01
[image: Build Status][image] [image: Coverage Status][image]
mhcflurry
=========
Open source neural network models for peptide-MHC binding affinity
prediction
The adaptive immune system depends on the presentation of protein
fragments by MHC molecules. Machine learning models of this
interaction are used in studies of infectious diseases, autoimmune
diseases, vaccine development, and cancer immunotherapy.
MHCflurry supports Class I peptide/MHC binding affinity prediction
using ensembles of allele-specific models. You can fit MHCflurry
models to your own data or download models that we fit to data from
IEDB and Kim 2014. Our combined dataset is available for download
here.
Pan-allelic prediction is supported in principle but is not yet
performing accurately. Infrastructure for modeling other aspects of
antigen processing is also implemented but experimental.
If you find MHCflurry useful in your research please cite:
O’Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
Setup (pip)
***********
Install the package:
pip install mhcflurry
Then download our datasets and trained models:
mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
nosetests .
The MHCflurry predictors are implemented in Python using keras.
MHCflurry works with both the tensorflow and theano keras backends.
The tensorflow backend gives faster model-loading time but is
undergoing more rapid development and sometimes hits issues. If you
encounter tensorflow errors running MHCflurry, try setting this
environment variable to switch to the theano backend:
export KERAS_BACKEND=theano
You may also needs to "pip install theano".
Setup (conda)
*************
You can alternatively get up and running with a conda environment as
follows:
conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.0'
source activate mhcflurry-env
Then continue as above:
pip install mhcflurry
mhcflurry-downloads fetch
If you wish to test your installation, you can install "nose" and run
the tests from a checkout:
pip install nose
nosetests .
Making predictions from the command-line
****************************************
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
The predictions returned are affinities (KD) in nM. The
"prediction_low" and "prediction_high" fields give the 5-95 percentile
predictions across the models in the ensemble. The predictions above
were generated with MHCflurry 0.9.2. Your exact predictions may vary
slightly from these (up to about 1 nM) depending on the Keras backend
in use and other numerical details. Different versions of MHCflurry
can of course give results considerably different from these.
You can also specify the input and output as CSV files. Run
"mhcflurry-predict -h" for details.
Making predictions from Python
******************************
>>> from mhcflurry import Class1AffinityPredictor
>>> predictor = Class1AffinityPredictor.load()
>>> predictor.predict_to_dataframe(peptides=['SIINFEKL'], allele='A0201')
allele peptide prediction prediction_low prediction_high
A0201 SIINFEKL 6029.084473 4474.103253 7771.297702
See the class1_allele_specific_models.ipynb notebook for an overview
of the Python API, including fitting your own predictors.
Scanning protein sequences for predicted epitopes
*************************************************
The mhctools package provides support for scanning protein sequences
to find predicted epitopes. It supports MHCflurry as well as other
binding predictors. Here is an example:
# First install mhctools if needed:
pip install mhctools
# Now generate predictions for protein sequences in FASTA format:
mhctools \
--mhc-predictor mhcflurry \
--input-fasta-file INPUT.fasta \
--mhc-alleles A02:01,A03:01 \
--mhc-peptide-lengths 8,9,10,11 \
--extract-subsequences \
--out RESULT.csv
Details on the downloadable models
**********************************
Environment variables
*********************
The path where MHCflurry looks for model weights and data can be set
with the "MHCFLURRY_DOWNLOADS_DIR" environment variable. This
directory should contain subdirectories like “models_class1”.
:orphan:
.. include:: /intro.rst
:start-line: 3
......@@ -7,3 +8,179 @@
.. include:: /python_tutorial.rst
.. include:: /models_supported_alleles.rst
|Build Status| |Coverage Status|
mhcflurry
=========
Open source neural network models for peptide-MHC binding affinity
prediction
The `adaptive immune
system <https://en.wikipedia.org/wiki/Adaptive_immune_system>`__ depends
on the presentation of protein fragments by
`MHC <https://en.wikipedia.org/wiki/Major_histocompatibility_complex>`__
molecules. Machine learning models of this interaction are used in
studies of infectious diseases, autoimmune diseases, vaccine
development, and cancer immunotherapy.
MHCflurry supports Class I peptide/MHC binding affinity prediction using
ensembles of allele-specific models. You can fit MHCflurry models to
your own data or download models that we fit to data from
`IEDB <http://www.iedb.org/home_v3.php>`__ and `Kim
2014 <http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-241>`__.
Our combined dataset is available for download
`here <https://github.com/hammerlab/mhcflurry/releases/download/pre-1.0.0-alpha/data_curated.tar.bz2>`__.
Pan-allelic prediction is supported in principle but is not yet
performing accurately. Infrastructure for modeling other aspects of
antigen processing is also implemented but experimental.
If you find MHCflurry useful in your research please cite:
O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
Setup (pip)
-----------
Install the package:
::
pip install mhcflurry
Then download our datasets and trained models:
::
mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
::
nosetests .
The MHCflurry predictors are implemented in Python using
`keras <https://keras.io>`__.
MHCflurry works with both the tensorflow and theano keras backends. The
tensorflow backend gives faster model-loading time but is undergoing
more rapid development and sometimes hits issues. If you encounter
tensorflow errors running MHCflurry, try setting this environment
variable to switch to the theano backend:
::
export KERAS_BACKEND=theano
You may also needs to ``pip install theano``.
Setup (conda)
-------------
You can alternatively get up and running with a
`conda <https://conda.io/docs/>`__ environment as follows:
::
conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.0'
source activate mhcflurry-env
Then continue as above:
::
pip install mhcflurry
mhcflurry-downloads fetch
If you wish to test your installation, you can install ``nose`` and run
the tests from a checkout:
::
pip install nose
nosetests .
Making predictions from the command-line
----------------------------------------
.. code:: shell
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
The predictions returned are affinities (KD) in nM. The
``prediction_low`` and ``prediction_high`` fields give the 5-95
percentile predictions across the models in the ensemble. The
predictions above were generated with MHCflurry 0.9.2. Your exact
predictions may vary slightly from these (up to about 1 nM) depending on
the Keras backend in use and other numerical details. Different versions
of MHCflurry can of course give results considerably different from
these.
You can also specify the input and output as CSV files. Run
``mhcflurry-predict -h`` for details.
Making predictions from Python
------------------------------
.. code:: python
>>> from mhcflurry import Class1AffinityPredictor
>>> predictor = Class1AffinityPredictor.load()
>>> predictor.predict_to_dataframe(peptides=['SIINFEKL'], allele='A0201')
allele peptide prediction prediction_low prediction_high
A0201 SIINFEKL 6029.084473 4474.103253 7771.297702
See the
`class1_allele_specific_models.ipynb <https://github.com/hammerlab/mhcflurry/blob/master/examples/class1_allele_specific_models.ipynb>`__
notebook for an overview of the Python API, including fitting your own
predictors.
Scanning protein sequences for predicted epitopes
-------------------------------------------------
The `mhctools <https://github.com/hammerlab/mhctools>`__ package
provides support for scanning protein sequences to find predicted
epitopes. It supports MHCflurry as well as other binding predictors.
Here is an example:
::
# First install mhctools if needed:
pip install mhctools
# Now generate predictions for protein sequences in FASTA format:
mhctools \
--mhc-predictor mhcflurry \
--input-fasta-file INPUT.fasta \
--mhc-alleles A02:01,A03:01 \
--mhc-peptide-lengths 8,9,10,11 \
--extract-subsequences \
--out RESULT.csv
Details on the downloadable models
----------------------------------
Environment variables
---------------------
The path where MHCflurry looks for model weights and data can be set
with the ``MHCFLURRY_DOWNLOADS_DIR`` environment variable. This
directory should contain subdirectories like "models_class1".
.. |Build Status| image:: https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master
:target: https://travis-ci.org/hammerlab/mhcflurry
.. |Coverage Status| image:: https://coveralls.io/repos/github/hammerlab/mhcflurry/badge.svg?branch=master
:target: https://coveralls.io/github/hammerlab/mhcflurry?branch=master
:orphan:
.. image:: https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master
:target: https://travis-ci.org/hammerlab/mhcflurry
......
......@@ -2,3 +2,5 @@ sphinx-autorun
sphinxcontrib-programoutput
sphinx
numpydoc
pypandoc
mhctools
......@@ -24,7 +24,7 @@ from setuptools import setup
PY2 = (sys.version_info.major == 2)
readme_dir = os.path.dirname(__file__)
readme_filename = os.path.join(readme_dir, 'README.md')
readme_filename = os.path.join(readme_dir, 'README.rst')
try:
with open(readme_filename, 'r') as f:
......@@ -33,13 +33,6 @@ except:
logging.warning("Failed to load %s" % readme_filename)
readme = ""
try:
import pypandoc
readme = pypandoc.convert(readme, to='rst', format='md')
except:
logging.warning("Conversion of long_description from MD to RST failed")
pass
with open('mhcflurry/__init__.py', 'r') as f:
version = re.search(
r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]',
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment