Newer
Older
[](https://travis-ci.org/openvax/mhcflurry)
[documented](http://openvax.github.io/mhcflurry/) implementation.
MHCflurry supports Class I peptide/MHC binding affinity prediction using
ensembles of allele-specific models. It runs on Python 2.7 and 3.4+ using
the [keras](https://keras.io) neural network library. It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html) interfaces.
If you find MHCflurry useful in your research please cite:
> O'Donnell, T. et al., 2017. MHCflurry: open-source class I MHC binding affinity prediction. bioRxiv. Available at: http://www.biorxiv.org/content/early/2017/08/09/174243.
## Installation (pip)
Install the package:
```
$ pip install mhcflurry
```
Then download our datasets and trained models:
```
$ mhcflurry-downloads fetch
```
You can now generate predictions:
```
$ mhcflurry-predict \
--alleles HLA-A0201 HLA-A0301 \
--peptides SIINFEKL SIINFEKD SIINFEKQ \
--out /tmp/predictions.csv \
Wrote: /tmp/predictions.csv
```
See the [documentation](http://openvax.github.io/mhcflurry/) for more details.