Newer
Older
.. image:: https://travis-ci.org/hammerlab/mhcflurry.svg?branch=master
:target: https://travis-ci.org/hammerlab/mhcflurry
.. image:: https://coveralls.io/repos/github/hammerlab/mhcflurry/badge.svg?branch=master
:target: https://coveralls.io/github/hammerlab/mhcflurry
Open source neural network models for peptide-MHC binding affinity prediction
MHCflurry is an open source package for peptide/MHC I binding affinity
prediction. It provides competitive accuracy with a fast and
documented implementation.
You can download pre-trained MHCflurry models fit to affinity
measurements deposited in IEDB or train a MHCflurry predictor on your
own data.
Currently only allele-specific prediction is implemented, in which
separate models are trained for each allele. The released models
therefore support a fixed set of common class I alleles for which
sufficient published training data is available (see Supported alleles
and peptide lengths).
MHCflurry supports Python versions 2.7 and 3.4+. It uses the Keras
neural network library via either the Tensorflow or Theano backends.
GPUs may optionally be used for a generally modest speed improvement.
If you find MHCflurry useful in your research please cite:
O’Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
Then download our datasets and trained models:
From a checkout you can run the unit tests with:
You can alternatively get up and running with a conda environment as
follows. Some users have reported that this can avoid problems
installing tensorflow.
$ conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.2'
$ source activate mhcflurry-env
Most users will use pre-trained MHCflurry models that we release.
These models are distributed separately from the pip package and may
be downloaded with the mhcflurry-downloads tool:
We also release a few other “downloads,” such as curated training data
and some experimental models. To see what you have downloaded, run:
$ mhcflurry-downloads info
Environment variables
MHCFLURRY_DATA_DIR [unset or empty]
MHCFLURRY_DOWNLOADS_CURRENT_RELEASE [unset or empty]
MHCFLURRY_DOWNLOADS_DIR [unset or empty]
Configuration
current release = 1.0.0
downloads dir = '/Users/tim/Library/Application Support/mhcflurry/4/1.0.0' [exists]
DOWNLOAD NAME DOWNLOADED? DEFAULT? URL
models_class1 YES YES http://github.com/hammerlab/mhcflurry/releases/download/pre-1.0/models_class1.tar.bz2
models_class1_experiments1 NO NO http://github.com/hammerlab/mhcflurry/releases/download/pre-1.0/models_class1_experiments1.tar.bz2
cross_validation_class1 YES NO http://github.com/hammerlab/mhcflurry/releases/download/pre-1.0/cross_validation_class1.tar.bz2
data_iedb NO NO https://github.com/hammerlab/mhcflurry/releases/download/pre-1.0/data_iedb.tar.bz2
data_kim2014 NO NO http://github.com/hammerlab/mhcflurry/releases/download/0.9.1/data_kim2014.tar.bz2
data_curated YES YES https://github.com/hammerlab/mhcflurry/releases/download/pre-1.0/data_curated.tar.bz2
Files downloaded with mhcflurry-downloads are stored in a platform-
specific directory. To get the path to downloaded data, you can use:
$ mhcflurry-downloads path models_class1
/Users/tim/Library/Application Support/mhcflurry/4/1.0.0/models_class1/
Note: The code we use for generating the downloads is in the
"downloads_generation" directory in the repository.
Generating predictions
**********************
The mhcflurry-predict command generates predictions from the command-
line. By default it will use the pre-trained models you downloaded
above but other models can be used by specifying the "--models"
argument.
Running:
$ mhcflurry-predict
--alleles HLA-A0201 HLA-A0301
--peptides SIINFEKL SIINFEKD SIINFEKQ
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
results in a file like this:
$ head -n 3 /tmp/predictions.csv
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high,mhcflurry_prediction_percentile
HLA-A0201,SIINFEKL,4899.047843425702,2767.7636539507857,7269.683642935029,6.509787499999997
HLA-A0201,SIINFEKD,21050.420242970613,16834.65859138968,24129.046091695887,34.297175
The predictions are given as affinities (KD) in nM in the
"mhcflurry_prediction" column. The other fields give the 5-95
percentile predictions across the models in the ensemble and the
quantile of the affinity prediction among a large number of random
peptides tested on that allele.
The predictions shown above were generated with MHCflurry 1.0.0.
Different versions of MHCflurry can give considerably different
results. Even on the same version, your exact predictions may vary (up
to about 1 nM) depending on the Keras backend and other details.
In most cases you’ll want to specify the input as a CSV file instead
of passing peptides and alleles as commandline arguments. See
mhcflurry-predict docs.
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
The mhcflurry-class1-train-allele-specific-models command is used to
fit models to training data. The models we release with MHCflurry are
trained with a command like:
$ mhcflurry-class1-train-allele-specific-models \
--data TRAINING_DATA.csv \
--hyperparameters hyperparameters.yaml \
--percent-rank-calibration-num-peptides-per-length 1000000 \
--min-measurements-per-allele 75 \
--out-models-dir models
MHCflurry predictors are serialized to disk as many files in a
directory. The command above will write the models to the output
directory specified by the "--out-models-dir" argument. This directory
has files like:
manifest.csv
percent_ranks.csv
weights_BOLA-6*13:01-0-1e6e7c0610ac68f8.npz
...
weights_PATR-B*24:01-0-e12e0ee723833110.npz
weights_PATR-B*24:01-0-ec4a36529321d868.npz
weights_PATR-B*24:01-0-fd5a340098d3a9f4.npz
The "manifest.csv" file gives metadata for all the models used in the
predictor. There will be a "weights_..." file for each model giving
its weights (the parameters for the neural network). The
"percent_ranks.csv" stores a histogram of model predictions for each
allele over a large number of random peptides. It is used for
generating the percent ranks at prediction time.
To call mhcflurry-class1-train-allele-specific-models you’ll need some
training data. The data we use for our released predictors can be
downloaded with mhcflurry-downloads:
$ mhcflurry-downloads fetch data_curated
It looks like this:
$ bzcat "$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" | head -n 3
allele,peptide,measurement_value,measurement_type,measurement_source,original_allele
BoLA-1*21:01,AENDTLVVSV,7817.0,quantitative,Barlow - purified MHC/competitive/fluorescence,BoLA-1*02101
BoLA-1*21:01,NQFNGGCLLV,1086.0,quantitative,Barlow - purified MHC/direct/fluorescence,BoLA-1*02101
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
Scanning protein sequences for predicted epitopes
*************************************************
The mhctools package provides support for scanning protein sequences
to find predicted epitopes. It supports MHCflurry as well as other
binding predictors. Here is an example.
First, install "mhctools" if it is not already installed:
$ pip install mhctools
We’ll generate predictions across "example.fasta", a FASTA file with
two short sequences:
>protein1
MDSKGSSQKGSRLLLLLVVSNLLLCQGVVSTPVCPNGPGNCQV
EMFNEFDKRYAQGKGFITMALNSCHTSSLPTPEDKEQAQQTHH
>protein2
VTEVRGMKGAPDAILSRAIEIEEENKRLLEGMEMIFGQVIPGA
ARYSAFYNLLHCLRRDSSKIDTYLKLLNCRIIYNNNC
Here’s the "mhctools" invocation. See "mhctools -h" for more
information.
$ mhctools
--mhc-predictor mhcflurry
--input-fasta-file example.fasta
--mhc-alleles A02:01,A03:01
--mhc-peptide-lengths 8,9,10,11
--extract-subsequences
2017-12-21 16:29:58,003 - mhctools.cli.args - INFO - Building MHC binding prediction type for alleles ['HLA-A*02:01', 'HLA-A*03:01'] and epitope lengths [8, 9, 10, 11]
2017-12-21 16:30:03,062 - mhctools.cli.script - INFO -
...
[1192 rows x 8 columns]
This will write a file giving predictions for all subsequences of the
specified lengths:
source_sequence_name,offset,peptide,allele,affinity,percentile_rank,prediction_method_name,length
protein2,42,AARYSAFY,HLA-A*03:01,5744.344274398671,4.739962499999998,mhcflurry,8
protein2,42,AARYSAFYN,HLA-A*03:01,10576.536440802967,8.399187499999996,mhcflurry,9
The MHCflurry Python API exposes additional options and features
beyond those supported by the commandline tools. This tutorial gives a
basic overview of the most important functionality. See the API
Documentation for further details.
The "Class1AffinityPredictor" class is the primary user-facing
interface.
/Users/tim/miniconda3/envs/py3k/lib/python3.5/site-packages/matplotlib/__init__.py:913: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.
warnings.warn(self.msg_depr % (key, alt_key))
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# coding: utf-8
# In[22]:
import pandas
import numpy
import seaborn
import logging
from matplotlib import pyplot
import mhcflurry
# # Download data and models
# In[2]:
get_ipython().system('mhcflurry-downloads fetch')
# # Making predictions with `Class1AffinityPredictor`
# In[3]:
help(mhcflurry.Class1AffinityPredictor)
# In[4]:
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load()
# In[5]:
downloaded_predictor.predict(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
# In[6]:
downloaded_predictor.predict_to_dataframe(allele="HLA-A0201", peptides=["SIINFEKL", "SIINFEQL"])
downloaded_predictor.predict_to_dataframe(alleles=["HLA-A0201", "HLA-B*57:01"], peptides=["SIINFEKL", "SIINFEQL"])
downloaded_predictor.predict_to_dataframe(
allele="HLA-A0201",
peptides=["SIINFEKL", "SIINFEQL"],
include_individual_model_predictions=True)
downloaded_predictor.predict_to_dataframe(
allele="HLA-A0201",
peptides=["SIINFEKL", "SIINFEQL", "TAAAALANGGGGGGGG"],
throw=False) # Without throw=False, you'll get a ValueError for invalid peptides or alleles
# # Instantiating a `Class1AffinityPredictor` from a saved model on disk
models_dir = mhcflurry.downloads.get_path("models_class1", "models")
models_dir
# This will be the same predictor we instantiated above. We're just being explicit about what models to load.
downloaded_predictor = mhcflurry.Class1AffinityPredictor.load(models_dir)
downloaded_predictor.predict(["SIINFEKL", "SIQNPEKP", "SYNFPEPI"], allele="HLA-A0301")
# This is the data the downloaded models were trained on
data_path = mhcflurry.downloads.get_path("data_curated", "curated_training_data.csv.bz2")
data_path
# We'll use mostly the default hyperparameters here. Could also specify them as kwargs.
new_model = mhcflurry.Class1NeuralNetwork(layer_sizes=[16])
new_model.hyperparameters
train_data = data_df.loc[
(data_df.allele == "HLA-B*57:01") &
(data_df.peptide.str.len() >= 8) &
(data_df.peptide.str.len() <= 15)
]
get_ipython().magic('time new_model.fit(train_data.peptide.values, train_data.measurement_value.values)')
# # Fit a model: high level `Class1AffinityPredictor` interface
# This can be called any number of times, for example on different alleles, to build up the ensembles.
affinity_predictor.fit_allele_specific_predictors(
n_models=1,
architecture_hyperparameters={"layer_sizes": [16], "max_epochs": 10},
peptides=train_data.peptide.values,
affinities=train_data.measurement_value.values,
allele="HLA-B*57:01",
)
affinity_predictor.predict(["SYNPEPII"], allele="HLA-B*57:01")
get_ipython().system('mkdir /tmp/saved-affinity-predictor')
affinity_predictor.save("/tmp/saved-affinity-predictor")
get_ipython().system('ls /tmp/saved-affinity-predictor')
affinity_predictor2 = mhcflurry.Class1AffinityPredictor.load("/tmp/saved-affinity-predictor")
affinity_predictor2.predict(["SYNPEPII"], allele="HLA-B*57:01")
Models released with the current version of MHCflurry (1.0.0) support
peptides of length 8-15 and the following 124 alleles:
BoLA-6*13:01, Eqca-1*01:01, H-2-Db, H-2-Dd, H-2-Kb, H-2-Kd, H-2-Kk,
H-2-Ld, HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03,
HLA-A*02:05, HLA-A*02:06, HLA-A*02:07, HLA-A*02:11, HLA-A*02:12,
HLA-A*02:16, HLA-A*02:17, HLA-A*02:19, HLA-A*02:50, HLA-A*03:01,
HLA-A*11:01, HLA-A*23:01, HLA-A*24:01, HLA-A*24:02, HLA-A*24:03,
HLA-A*25:01, HLA-A*26:01, HLA-A*26:02, HLA-A*26:03, HLA-A*29:02,
HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*32:07,
HLA-A*33:01, HLA-A*66:01, HLA-A*68:01, HLA-A*68:02, HLA-A*68:23,
HLA-A*69:01, HLA-A*80:01, HLA-B*07:01, HLA-B*07:02, HLA-B*08:01,
HLA-B*08:02, HLA-B*08:03, HLA-B*14:02, HLA-B*15:01, HLA-B*15:02,
HLA-B*15:03, HLA-B*15:09, HLA-B*15:17, HLA-B*15:42, HLA-B*18:01,
HLA-B*27:01, HLA-B*27:03, HLA-B*27:04, HLA-B*27:05, HLA-B*27:06,
HLA-B*27:20, HLA-B*35:01, HLA-B*35:03, HLA-B*35:08, HLA-B*37:01,
HLA-B*38:01, HLA-B*39:01, HLA-B*40:01, HLA-B*40:02, HLA-B*42:01,
HLA-B*44:01, HLA-B*44:02, HLA-B*44:03, HLA-B*45:01, HLA-B*45:06,
HLA-B*46:01, HLA-B*48:01, HLA-B*51:01, HLA-B*53:01, HLA-B*54:01,
HLA-B*57:01, HLA-B*58:01, HLA-B*73:01, HLA-B*83:01, HLA-C*03:03,
HLA-C*03:04, HLA-C*04:01, HLA-C*05:01, HLA-C*06:02, HLA-C*07:01,
HLA-C*07:02, HLA-C*08:02, HLA-C*12:03, HLA-C*14:02, HLA-C*15:02,
Mamu-A*01:01, Mamu-A*02:01, Mamu-A*02:0102, Mamu-A*07:01,
Mamu-A*07:0103, Mamu-A*11:01, Mamu-A*22:01, Mamu-A*26:01,
Mamu-B*01:01, Mamu-B*03:01, Mamu-B*08:01, Mamu-B*10:01, Mamu-B*17:01,
Mamu-B*17:04, Mamu-B*39:01, Mamu-B*52:01, Mamu-B*66:01, Mamu-B*83:01,
Mamu-B*87:01, Patr-A*01:01, Patr-A*03:01, Patr-A*04:01, Patr-A*07:01,
Patr-A*09:01, Patr-B*01:01, Patr-B*13:01, Patr-B*24:01
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
mhcflurry
=========
Open source neural network models for peptide-MHC binding affinity
prediction
The adaptive immune system depends on the presentation of protein
fragments by MHC molecules. Machine learning models of this
interaction are used in studies of infectious diseases, autoimmune
diseases, vaccine development, and cancer immunotherapy.
MHCflurry supports Class I peptide/MHC binding affinity prediction
using ensembles of allele-specific models. You can fit MHCflurry
models to your own data or download models that we fit to data from
IEDB and Kim 2014. Our combined dataset is available for download
here.
Pan-allelic prediction is supported in principle but is not yet
performing accurately. Infrastructure for modeling other aspects of
antigen processing is also implemented but experimental.
If you find MHCflurry useful in your research please cite:
O’Donnell, T. et al., 2017. MHCflurry: open-source class I MHC
binding affinity prediction. bioRxiv. Available at:
http://www.biorxiv.org/content/early/2017/08/09/174243.
Setup (pip)
***********
Install the package:
pip install mhcflurry
Then download our datasets and trained models:
mhcflurry-downloads fetch
From a checkout you can run the unit tests with:
nosetests .
The MHCflurry predictors are implemented in Python using keras.
MHCflurry works with both the tensorflow and theano keras backends.
The tensorflow backend gives faster model-loading time but is
undergoing more rapid development and sometimes hits issues. If you
encounter tensorflow errors running MHCflurry, try setting this
environment variable to switch to the theano backend:
export KERAS_BACKEND=theano
You may also needs to "pip install theano".
Setup (conda)
*************
You can alternatively get up and running with a conda environment as
follows:
conda create -q -n mhcflurry-env python=3.6 'tensorflow>=1.1.0'
source activate mhcflurry-env
Then continue as above:
pip install mhcflurry
mhcflurry-downloads fetch
If you wish to test your installation, you can install "nose" and run
the tests from a checkout:
pip install nose
nosetests .
Making predictions from the command-line
****************************************
$ mhcflurry-predict --alleles HLA-A0201 HLA-A0301 --peptides SIINFEKL SIINFEKD SIINFEKQ
allele,peptide,mhcflurry_prediction,mhcflurry_prediction_low,mhcflurry_prediction_high
HLA-A0201,SIINFEKL,5326.541919062165,3757.86675352994,7461.37693353508
HLA-A0201,SIINFEKD,18763.70298522213,13140.82000240037,23269.82139560844
HLA-A0201,SIINFEKQ,18620.10057358322,13096.425874678192,23223.148184869413
HLA-A0301,SIINFEKL,24481.726678691946,21035.52779725433,27245.371837497867
HLA-A0301,SIINFEKD,24687.529360239587,21582.590014592537,27749.39869616437
HLA-A0301,SIINFEKQ,25923.062203902562,23522.5793450799,28079.456657427705
The predictions returned are affinities (KD) in nM. The
"prediction_low" and "prediction_high" fields give the 5-95 percentile
predictions across the models in the ensemble. The predictions above
were generated with MHCflurry 0.9.2. Your exact predictions may vary
slightly from these (up to about 1 nM) depending on the Keras backend
in use and other numerical details. Different versions of MHCflurry
can of course give results considerably different from these.
You can also specify the input and output as CSV files. Run
"mhcflurry-predict -h" for details.
Making predictions from Python
******************************
>>> from mhcflurry import Class1AffinityPredictor
>>> predictor = Class1AffinityPredictor.load()
>>> predictor.predict_to_dataframe(peptides=['SIINFEKL'], allele='A0201')
allele peptide prediction prediction_low prediction_high
A0201 SIINFEKL 6029.084473 4474.103253 7771.297702
See the class1_allele_specific_models.ipynb notebook for an overview
of the Python API, including fitting your own predictors.
Scanning protein sequences for predicted epitopes
*************************************************
The mhctools package provides support for scanning protein sequences
to find predicted epitopes. It supports MHCflurry as well as other
binding predictors. Here is an example:
# First install mhctools if needed:
pip install mhctools
# Now generate predictions for protein sequences in FASTA format:
mhctools \
--mhc-predictor mhcflurry \
--input-fasta-file INPUT.fasta \
--mhc-alleles A02:01,A03:01 \
--mhc-peptide-lengths 8,9,10,11 \
--extract-subsequences \
--out RESULT.csv
Details on the downloadable models
**********************************
Environment variables
*********************
The path where MHCflurry looks for model weights and data can be set
with the "MHCFLURRY_DOWNLOADS_DIR" environment variable. This
directory should contain subdirectories like “models_class1”.