Newer
Older
Run MHCflurry predictor on specified peptides.
By default, the presentation predictor is used, and predictions for
MHC I binding affinity, antigen processing, and the composite presentation score
are returned. If you just want binding affinity predictions, pass
--affinity-only.
Write a CSV file containing the contents of INPUT.csv plus additional columns
giving MHCflurry predictions:
The input CSV file is expected to contain columns "allele", "peptide", and,
optionally, "n_flank", and "c_flank".
If `--out` is not specified, results are written to stdout.
You can also run on alleles and peptides specified on the commandline, in
which case predictions are written for all combinations of alleles and
peptides:
$ mhcflurry-predict --alleles HLA-A0201 H-2Kb --peptides SIINFEKL DENDREKLLL
'''
from __future__ import (
print_function,
division,
absolute_import,
)
import sys
import argparse
import itertools
from .downloads import get_default_class1_presentation_models_dir
from .class1_affinity_predictor import Class1AffinityPredictor
from .class1_presentation_predictor import Class1PresentationPredictor
from .version import __version__
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
add_help=False)
helper_args = parser.add_argument_group(title="Help")
helper_args.add_argument(
"-h", "--help",
action="help",
help="Show this help message and exit"
)
helper_args.add_argument(
"--list-supported-alleles",
action="store_true",
default=False,
help="Prints the list of supported alleles and exits"
)
helper_args.add_argument(
"--list-supported-peptide-lengths",
action="store_true",
default=False,
help="Prints the list of supported peptide lengths and exits"
)
helper_args.add_argument(
"--version",
action="version",
version="mhcflurry %s" % __version__,
)
input_args = parser.add_argument_group(title="Input (required)")
"--alleles",
metavar="ALLELE",
nargs="+",
help="Alleles to predict (exclusive with passing an input CSV)")
"--peptides",
metavar="PEPTIDE",
nargs="+",
help="Peptides to predict (exclusive with passing an input CSV)")
input_mod_args = parser.add_argument_group(title="Input options")
"--allele-column",
metavar="NAME",
default="allele",
help="Input column name for alleles. Default: '%(default)s'")
"--peptide-column",
metavar="NAME",
default="peptide",
help="Input column name for peptides. Default: '%(default)s'")
input_mod_args.add_argument(
"--n-flank-column",
metavar="NAME",
default="n_flank",
help="Column giving N-terminal flanking sequence. Default: '%(default)s'")
input_mod_args.add_argument(
"--c-flank-column",
metavar="NAME",
default="c_flank",
help="Column giving C-terminal flanking sequence. Default: '%(default)s'")
input_mod_args.add_argument(
"--no-throw",
action="store_true",
default=False,
help="Return NaNs for unsupported alleles or peptides instead of raising")
output_args = parser.add_argument_group(title="Output options")
output_args.add_argument(
"--out",
metavar="OUTPUT.csv",
help="Output CSV")
output_args.add_argument(
default="mhcflurry_",
help="Prefix for output column names. Default: '%(default)s'")
output_args.add_argument(
"--output-delimiter",
metavar="CHAR",
default=",",
help="Delimiter character for results. Default: '%(default)s'")
output_args.add_argument(
"--no-affinity-percentile",
default=False,
action="store_true",
help="Do not include affinity percentile rank")
output_args.add_argument(
"--always-include-best-allele",
action="store_true",
help="Always include the best_allele column even when it is identical "
"to the allele column (i.e. all queries are monoallelic).")
model_args = parser.add_argument_group(title="Model options")
help="Directory containing models. Either a binding affinity predictor or "
"a presentation predictor can be used. "
"Default: %s" % get_default_class1_presentation_models_dir(
test_exists=False))
model_args.add_argument(
"--affinity-only",
action="store_true",
default=False,
help="Affinity prediction only (no antigen processing or presentation)")
model_args.add_argument(
"--no-flanking",
action="store_true",
default=False,
help="Do not use flanking sequence information even when available")
logging.getLogger('tensorflow').disabled = True
if not argv:
parser.print_help()
parser.exit(1)
# It's hard to pass a tab in a shell, so we correct a common error:
if args.output_delimiter == "\\t":
args.output_delimiter = "\t"
models_dir = args.models
if models_dir is None:
# The reason we set the default here instead of in the argument parser
# is that we want to test_exists at this point, so the user gets a
# message instructing them to download the models if needed.
models_dir = get_default_class1_presentation_models_dir(test_exists=True)
if os.path.exists(os.path.join(models_dir, "weights.csv")):
# Using a presentation predictor.
predictor = Class1PresentationPredictor.load(models_dir)
else:
# Using just an affinity predictor.
affinity_predictor = Class1AffinityPredictor.load(models_dir)
predictor = Class1PresentationPredictor(
affinity_predictor=affinity_predictor)
if not args.affinity_only:
logging.warning(
"Specified models are an affinity predictor, which implies "
"--affinity-only. Specify this argument to silence this warning.")
args.affinity_only = True
if args.list_supported_alleles:
print("\n".join(predictor.supported_alleles))
return
if args.list_supported_peptide_lengths:
min_len, max_len = predictor.supported_peptide_lengths
print("\n".join([str(l) for l in range(min_len, max_len+1)]))
return
if args.input:
if args.alleles or args.peptides:
parser.error(
"If an input file is specified, do not specify --alleles "
"or --peptides")
df = pandas.read_csv(args.input)
print("Read input CSV with %d rows, columns are: %s" % (
len(df), ", ".join(df.columns)))
for col in [args.allele_column, args.peptide_column]:
if col not in df.columns:
raise ValueError(
"No such column '%s' in CSV. Columns are: %s" % (
col, ", ".join(["'%s'" % c for c in df.columns])))
else:
if not args.alleles or not args.peptides:
parser.error(
"Specify either an input CSV file or both the "
"--alleles and --peptides arguments")
pairs = list(itertools.product(args.alleles, args.peptides))
df = pandas.DataFrame({
"allele": [p[0] for p in pairs],
"peptide": [p[1] for p in pairs],
})
logging.info(
"Predicting for %d alleles and %d peptides = %d predictions" % (
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
allele_string_to_alleles = (
df.drop_duplicates(args.allele_column).set_index(
args.allele_column, drop=False)[
args.allele_column
].str.split(r"[,\s]+")).to_dict()
if args.affinity_only:
predictions = predictor.predict_affinity(
peptides=df[args.peptide_column].values,
alleles=allele_string_to_alleles,
experiment_names=df[args.allele_column],
throw=not args.no_throw,
include_affinity_percentile=not args.no_affinity_percentile)
else:
n_flanks = None
c_flanks = None
if not args.no_flanking:
if args.n_flank_column in df.columns and args.c_flank_column in df.columns:
n_flanks = df[args.n_flank_column]
c_flanks = df[args.c_flank_column]
else:
logging.warning(
"No flanking information provided. Specify --no-flanking "
"to silence this warning")
predictions = predictor.predict_to_dataframe(
peptides=df[args.peptide_column].values,
n_flanks=n_flanks,
c_flanks=c_flanks,
alleles=allele_string_to_alleles,
experiment_names=df[args.allele_column],
throw=not args.no_throw,
include_affinity_percentile=not args.no_affinity_percentile)
# If each query is just for a single allele, the "best_allele" column
# is redundant so we remove it.
if not args.always_include_best_allele:
if all(len(a) == 1 for a in allele_string_to_alleles.values()):
del predictions["best_allele"]
for col in predictions.columns:
if col not in ("allele", "peptide", "experiment_name", "peptide_num"):
df[args.prediction_column_prefix + col] = predictions[col]
df.to_csv(args.out, index=False, sep=args.output_delimiter)
df.to_csv(sys.stdout, index=False, sep=args.output_delimiter)