Newer
Older
'''
Run MHCflurry predictor on specified peptide/allele pairs.
Examples:
Write a CSV file containing the contents of INPUT.csv plus an
additional column giving MHCflurry binding affinity predictions:
The input CSV file is expected to contain columns ``allele`` and ``peptide``.
The predictions are written to a column called ``mhcflurry_prediction``.
These default column names may be changed with the `--allele-column`,
`--peptide-column`, and `--prediction-column` options.
If `--out` is not specified, results are written to standard out.
You can also run on alleles and peptides specified on the commandline, in
which case predictions are written for all combinations of alleles and
peptides:
$ mhcflurry-predict --alleles HLA-A0201 H-2Kb --peptides SIINFEKL DENDREKLLL
'''
from __future__ import (
print_function,
division,
absolute_import,
)
import sys
import argparse
import itertools
from .common import set_keras_backend
from .downloads import get_default_class1_models_dir
from .class1_affinity_predictor import Class1AffinityPredictor
from .version import __version__
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
add_help=False)
helper_args = parser.add_argument_group(title="Help")
helper_args.add_argument(
"-h", "--help",
action="help",
help="Show this help message and exit"
)
helper_args.add_argument(
"--list-supported-alleles",
action="store_true",
default=False,
help="Prints the list of supported alleles and exits"
)
helper_args.add_argument(
"--list-supported-peptide-lengths",
action="store_true",
default=False,
help="Prints the list of supported peptide lengths and exits"
)
helper_args.add_argument(
"--version",
action="version",
version="mhcflurry %s" % __version__,
)
input_args = parser.add_argument_group(title="Input (required)")
"--alleles",
metavar="ALLELE",
nargs="+",
help="Alleles to predict (exclusive with --input)")
"--peptides",
metavar="PEPTIDE",
nargs="+",
help="Peptides to predict (exclusive with --input)")
input_mod_args = parser.add_argument_group(title="Input options")
"--allele-column",
metavar="NAME",
default="allele",
help="Input column name for alleles. Default: '%(default)s'")
"--peptide-column",
metavar="NAME",
default="peptide",
help="Input column name for peptides. Default: '%(default)s'")
input_mod_args.add_argument(
"--no-throw",
action="store_true",
default=False,
help="Return NaNs for unsupported alleles or peptides instead of raising")
output_args = parser.add_argument_group(title="Output options")
output_args.add_argument(
"--out",
metavar="OUTPUT.csv",
help="Output CSV")
output_args.add_argument(
default="mhcflurry_",
help="Prefix for output column names. Default: '%(default)s'")
output_args.add_argument(
"--output-delimiter",
metavar="CHAR",
default=",",
help="Delimiter character for results. Default: '%(default)s'")
output_args.add_argument(
"--include-individual-model-predictions",
action="store_true",
default=False,
help="Include predictions from each model in the ensemble"
)
model_args = parser.add_argument_group(title="Model options")
"Default: %s" % get_default_class1_models_dir(test_exists=False))
implementation_args = parser.add_argument_group(title="Implementation options")
implementation_args.add_argument(
"--backend",
choices=("tensorflow-gpu", "tensorflow-cpu", "tensorflow-default"),
help="Keras backend. If not specified will use system default.")
implementation_args.add_argument(
"--threads",
metavar="N",
type=int,
help="Num threads for tensorflow to use. If unspecified, tensorflow will "
"pick a value based on the number of cores.")
if not argv:
parser.print_help()
parser.exit(1)
set_keras_backend(backend=args.backend, num_threads=args.threads)
# It's hard to pass a tab in a shell, so we correct a common error:
if args.output_delimiter == "\\t":
args.output_delimiter = "\t"
models_dir = args.models
if models_dir is None:
# The reason we set the default here instead of in the argument parser
# is that we want to test_exists at this point, so the user gets a
# message instructing them to download the models if needed.
models_dir = get_default_class1_models_dir(test_exists=True)
predictor = Class1AffinityPredictor.load(models_dir)
# The following two are informative commands that can come
# if a wrapper would like to incorporate input validation
# to not delibaretly make mhcflurry fail
if args.list_supported_alleles:
print("\n".join(predictor.supported_alleles))
return
if args.list_supported_peptide_lengths:
min_len, max_len = predictor.supported_peptide_lengths
print("\n".join([str(l) for l in range(min_len, max_len+1)]))
return
# End of early terminating routines
if args.input:
if args.alleles or args.peptides:
parser.error(
"If an input file is specified, do not specify --alleles "
"or --peptides")
df = pandas.read_csv(args.input)
print("Read input CSV with %d rows, columns are: %s" % (
len(df), ", ".join(df.columns)))
for col in [args.allele_column, args.peptide_column]:
if col not in df.columns:
raise ValueError(
"No such column '%s' in CSV. Columns are: %s" % (
col, ", ".join(["'%s'" % c for c in df.columns])))
else:
if not args.alleles or not args.peptides:
parser.error(
"Specify either an input CSV file or both the "
"--alleles and --peptides arguments")
Alex Rubinsteyn
committed
# split user specified allele and peptide strings in case they
# contain multiple entries separated by commas
alleles = []
for allele_string in args.alleles:
alleles.extend([s.strip() for s in allele_string.split(",")])
peptides = []
for peptide in args.peptides:
peptides.extend(peptide.strip() for p in peptide.split(","))
for peptide in peptides:
if not peptide.isalpha():
raise ValueError(
"Unexpected character(s) in peptide '%s'" % peptide)
pairs = list(itertools.product(alleles, peptides))
df = pandas.DataFrame({
"allele": [p[0] for p in pairs],
"peptide": [p[1] for p in pairs],
})
logging.info(
"Predicting for %d alleles and %d peptides = %d predictions" % (
predictions = predictor.predict_to_dataframe(
alleles=df[args.allele_column].values,
include_individual_model_predictions=(
args.include_individual_model_predictions),
for col in predictions.columns:
if col not in ("allele", "peptide"):
df[args.prediction_column_prefix + col] = predictions[col]
df.to_csv(args.out, index=False, sep=args.output_delimiter)
df.to_csv(sys.stdout, index=False, sep=args.output_delimiter)