Newer
Older
"""
Idea:
- take an allele where MS vs. no-MS trained predictors are very different. One
possiblility is DLA-88*501:01 but human would be better
- generate synethetic multi-allele MS by combining single-allele MS for differnet
alleles, including the selected allele
- train ligandome predictor based on the no-ms pan-allele models on theis
synthetic dataset
- see if the pan-allele predictor learns the "correct" motif for the selected
allele, i.e. updates to become more similar to the with-ms pan allele predictor.
"""
import logging
logging.getLogger('tensorflow').disabled = True
logging.getLogger('matplotlib').disabled = True
import pandas
import argparse
import sys
import numpy
from random import shuffle
from mhcflurry import Class1AffinityPredictor, Class1NeuralNetwork
from mhcflurry.class1_ligandome_predictor import Class1LigandomePredictor
from mhcflurry.common import random_peptides, positional_frequency_matrix
from mhcflurry.testing_utils import cleanup, startup
from mhcflurry.amino_acid import COMMON_AMINO_ACIDS
COMMON_AMINO_ACIDS = sorted(COMMON_AMINO_ACIDS)
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
def setup():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
startup()
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = Class1AffinityPredictor.load(
get_path("models_class1_pan", "models.no_mass_spec"),
optimization_level=0,
max_models=1)
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.with_mass_spec/frequency_matrices.csv.bz2"))
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = pandas.read_csv(
get_path(
"models_class1_pan",
"models.no_mass_spec/frequency_matrices.csv.bz2"))
def teardown():
global PAN_ALLELE_PREDICTOR_NO_MASS_SPEC
global PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF
global PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC = None
PAN_ALLELE_MOTIFS_WITH_MASS_SPEC_DF = None
PAN_ALLELE_MOTIFS_NO_MASS_SPEC_DF = None
cleanup()
def scramble_peptide(peptide):
lst = list(peptide)
shuffle(lst)
return "".join(lst)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def evaluate_loss(loss, y_true, y_pred):
import keras.backend as K
y_true = numpy.array(y_true)
y_pred = numpy.array(y_pred)
if y_pred.ndim == 1:
y_pred = y_pred.reshape((len(y_pred), 1))
if y_true.ndim == 1:
y_true = y_true.reshape((len(y_true), 1))
if K.backend() == "tensorflow":
session = K.get_session()
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval(session=session)
elif K.backend() == "theano":
y_true_var = K.constant(y_true, name="y_true")
y_pred_var = K.constant(y_pred, name="y_pred")
result = loss(y_true_var, y_pred_var)
return result.eval()
else:
raise ValueError("Unsupported backend: %s" % K.backend())
def Xtest_loss():
# Hit labels
y_true = [
1.0,
0.0,
1.0,
1.0,
0.0
]
y_true = numpy.array(y_true)
y_pred = [
[0.3, 0.7, 0.5],
[0.2, 0.4, 0.6],
[0.1, 0.5, 0.3],
[0.1, 0.7, 0.1],
[0.8, 0.2, 0.4],
]
y_pred = numpy.array(y_pred)
# reference implementation 1
contributions = []
for i in range(len(y_true)):
if y_true[i] == 1.0:
for j in range(len(y_true)):
if y_true[j] == 0.0:
tightest_i = max(y_pred[i])
contribution = sum(
max(0, y_pred[j, k] - tightest_i)**2
for k in range(y_pred.shape[1])
)
contributions.append(contribution)
contributions = numpy.array(contributions)
expected1 = contributions.sum()
# reference implementation 2: numpy
pos = y_pred[y_true.astype(bool)].max(1)
neg = y_pred[~y_true.astype(bool)]
expected2 = (
numpy.maximum(0, neg.reshape((-1, 1)) - pos)**2).sum()
numpy.testing.assert_almost_equal(expected1, expected2)
computed = evaluate_loss(
Class1LigandomePredictor.loss,
y_true,
y_pred.reshape(y_pred.shape + (1,)))
numpy.testing.assert_almost_equal(computed, expected1)
AA_DIST = pandas.Series(
dict((line.split()[0], float(line.split()[1])) for line in """
A 0.071732
E 0.060102
N 0.034679
D 0.039601
T 0.055313
L 0.115337
V 0.070498
S 0.071882
Q 0.040436
F 0.050178
G 0.053176
C 0.005429
H 0.025487
I 0.056312
W 0.013593
K 0.057832
M 0.021079
Y 0.043372
R 0.060330
P 0.053632
""".strip().split("\n")))
print(AA_DIST)
def make_random_peptides(num_peptides_per_length=10000, lengths=[9]):
peptides = []
for length in lengths:
peptides.extend(
random_peptides
(num_peptides_per_length, length=length, distribution=AA_DIST))
return EncodableSequences.create(peptides)
def make_motif(allele, peptides, frac=0.01):
peptides = EncodableSequences.create(peptides)
predictions = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.predict(
peptides=peptides,
allele=allele,
)
random_predictions_df = pandas.DataFrame({"peptide": peptides.sequences})
random_predictions_df["prediction"] = predictions
random_predictions_df = random_predictions_df.sort_values(
"prediction", ascending=True)
#print("Random peptide predictions", allele)
#print(random_predictions_df)
top = random_predictions_df.iloc[:int(len(random_predictions_df) * frac)]
matrix = positional_frequency_matrix(top.peptide.values)
#print("Matrix")
return matrix
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def test_synthetic_allele_refinement():
refine_allele = "HLA-C*01:02"
alleles = [
"HLA-A*02:01", "HLA-B*27:01", "HLA-C*07:01",
"HLA-A*03:01", "HLA-B*15:01", refine_allele
]
peptides_per_allele = [
2000, 1000, 500,
1500, 1200, 800,
]
allele_to_peptides = dict(zip(alleles, peptides_per_allele))
length = 9
train_with_ms = pandas.read_csv(
get_path("data_curated", "curated_training_data.with_mass_spec.csv.bz2"))
train_no_ms = pandas.read_csv(get_path("data_curated",
"curated_training_data.no_mass_spec.csv.bz2"))
def filter_df(df):
df = df.loc[
(df.allele.isin(alleles)) &
(df.peptide.str.len() == length)
]
return df
train_with_ms = filter_df(train_with_ms)
train_no_ms = filter_df(train_no_ms)
ms_specific = train_with_ms.loc[
~train_with_ms.peptide.isin(train_no_ms.peptide)
]
train_peptides = []
train_true_alleles = []
for allele in alleles:
peptides = ms_specific.loc[ms_specific.allele == allele].peptide.sample(
n=allele_to_peptides[allele])
train_peptides.extend(peptides)
train_true_alleles.extend([allele] * len(peptides))
hits_df = pandas.DataFrame({"peptide": train_peptides})
hits_df["true_allele"] = train_true_alleles
hits_df["hit"] = 1.0
decoys_df = hits_df.copy()
decoys_df["peptide"] = decoys_df.peptide.map(scramble_peptide)
decoys_df["true_allele"] = ""
decoys_df["hit"] = 0.0
train_df = pandas.concat([hits_df, decoys_df], ignore_index=True)
predictor = Class1LigandomePredictor(
PAN_ALLELE_PREDICTOR_NO_MASS_SPEC,
max_ensemble_size=1,
max_epochs=10,
learning_rate=0.00001,
patience=5,
min_delta=0.0)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
allele_encoding = MultipleAlleleEncoding(
experiment_names=["experiment1"] * len(train_df),
experiment_to_allele_list={
"experiment1": alleles,
},
max_alleles_per_experiment=6,
allele_to_sequence=PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.allele_to_sequence,
).compact()
pre_predictions = predictor.predict(
peptides=train_df.peptide.values,
allele_encoding=allele_encoding)
(model,) = PAN_ALLELE_PREDICTOR_NO_MASS_SPEC.class1_pan_allele_models
expected_pre_predictions = from_ic50(
model.predict(
peptides=numpy.repeat(train_df.peptide.values, len(alleles)),
allele_encoding=allele_encoding.allele_encoding,
)).reshape((-1, len(alleles)))
train_df["pre_max_prediction"] = pre_predictions.max(1)
pre_auc = roc_auc_score(train_df.hit.values, train_df.pre_max_prediction.values)
print("PRE_AUC", pre_auc)
#import ipdb ; ipdb.set_trace()
assert_allclose(pre_predictions, expected_pre_predictions)
motifs_history = []
random_peptides_encodable = make_random_peptides(10000, [9])
def update_motifs():
for allele in alleles:
motif = make_motif(allele, random_peptides_encodable)
motifs_history.append((allele, motif))
def progress():
predictions = predictor.predict(peptides=train_df.peptide.values,
allele_encoding=allele_encoding, )
train_df["max_prediction"] = predictions.max(1)
train_df["predicted_allele"] = pandas.Series(alleles).loc[
predictions.argmax(1).flatten()].values
mean_predictions_for_hit = train_df.loc[
train_df.hit == 1.0
].max_prediction.mean()
mean_predictions_for_decoy = train_df.loc[
train_df.hit == 0.0
].max_prediction.mean()
correct_allele_fraction = (
train_df.loc[train_df.hit == 1.0].predicted_allele ==
train_df.loc[train_df.hit == 1.0].true_allele
).mean()
auc = roc_auc_score(train_df.hit.values, train_df.max_prediction.values)
print("Mean prediction for hit", mean_predictions_for_hit)
print("Mean prediction for decoy", mean_predictions_for_decoy)
print("Correct predicted allele fraction", correct_allele_fraction)
print("AUC", auc)
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
metric_rows.append((
mean_predictions_for_hit,
mean_predictions_for_decoy,
correct_allele_fraction,
auc,
))
update_motifs()
return (predictions, auc)
print("Pre fitting:")
progress()
update_motifs()
print("Fitting...")
predictor.fit(
peptides=train_df.peptide.values,
labels=train_df.hit.values,
allele_encoding=allele_encoding,
progress_callback=progress,
)
(predictions, final_auc) = progress()
print("Final AUC", final_auc)
update_motifs()
motifs = pandas.DataFrame(
motifs_history,
columns=[
"allele",
"motif",
metrics = pandas.DataFrame(
metric_rows,
columns=[
"mean_predictions_for_hit",
"mean_predictions_for_decoy",
"correct_allele_fraction",
"auc"
])
#import ipdb ; ipdb.set_trace()
return (predictor, predictions, metrics, motifs)
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--out-metrics-csv",
default=None,
help="Metrics output")
parser.add_argument(
"--out-motifs-pickle",
if __name__ == '__main__':
# If run directly from python, leave the user in a shell to explore results.
setup()
args = parser.parse_args(sys.argv[1:])
(predictor, predictions, metrics, motifs) = test_synthetic_allele_refinement()
if args.out_metrics_csv:
metrics.to_csv(args.out_metrics_csv)
if args.out_motifs_pickle:
motifs.to_pickle(args.out_motifs_pickle)
# Leave in ipython
import ipdb # pylint: disable=import-error
ipdb.set_trace()