Newer
Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
import collections
import logging
import pepdata
from .train import impute_and_select_allele, AlleleSpecificTrainTestFold
from ..parallelism import get_default_executor
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
gbmr4_transformer = pepdata.reduced_alphabet.make_alphabet_transformer("gbmr4")
def default_projector(peptide):
"""
Given a peptide, return a list of projections for it. The projections are:
- the gbmr4 reduced representation
- for all positions in the peptide, the peptide with a "." replacing
the residue at that position
Peptides with overlapping projections are considered similar when doing
cross validation.
Parameters
----------
peptide : string
Returns
----------
string list
"""
def projections(peptide, edit_distance=1):
if edit_distance == 0:
return set([peptide])
return set.union(*[
projections(p, edit_distance - 1)
for p in (
peptide[0:i] + "." + peptide[(i + 1):]
for i in range(len(peptide)))
])
return sorted(projections(peptide)) + [gbmr4_transformer(peptide)]
def similar_peptides(set1, set2, projector=default_projector):
"""
Given two sets of peptides, return a list of the peptides whose reduced
representations are found in both sets.
Parameters
----------
projector : (string -> string) or (string -> string list)
Function giving projection(s) of a peptide
Returns
----------
string list
"""
result = collections.defaultdict(lambda: ([], []))
for (index, peptides) in enumerate([set1, set2]):
for peptide in peptides:
projections = projector(peptide)
if not isinstance(projections, list):
projections = [projections]
for projection in projections:
result[projection][index].append(peptide)
common = set()
for (peptides1, peptides2) in result.values():
if peptides1 and peptides2:
common.update(peptides1 + peptides2)
return sorted(common)
def cross_validation_folds(
train_data,
alleles=None,
n_folds=3,
drop_similar_peptides=False,
imputer=None,
impute_kwargs={
'min_observations_per_peptide': 2,
'min_observations_per_allele': 2,
},
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
'''
Split a Dataset into n_folds cross validation folds for each allele,
optionally performing imputation.
Parameters
-----------
train_data : mhcflurry.Dataset
alleles : string list, optional
Alleles to run cross validation on. Default: all alleles in
train_data.
n_folds : int, optional
Number of cross validation folds for each allele.
drop_similar_peptides : boolean, optional
For each fold, remove peptides from the test data that are similar
to peptides in the train data. Similarity is defined as in the
similar_peptides function.
imputer : fancyimpute.Solver, optional
Imputer to use. If not specified, no imputation is done.
impute_kwargs : dict, optional
Additional kwargs to pass to mhcflurry.Dataset.impute_missing_values.
n_jobs : integer, optional
The number of jobs to run in parallel. If -1, then the number of jobs
is set to the number of cores.
Returns
-----------
list of AlleleSpecificTrainTestFold of length num alleles * n_folds
'''
if executor is None:
executor = get_default_executor()
if alleles is None:
alleles = train_data.unique_alleles()
for allele in alleles:
logging.info("Allele: %s" % allele)
cv_iter = train_data.cross_validation_iterator(
allele, n_folds=n_folds, shuffle=True)
for (all_allele_train_split, full_test_split) in cv_iter:
peptides_to_remove = []
if drop_similar_peptides:
peptides_to_remove = similar_peptides(
all_allele_train_split.get_allele(allele).peptides,
full_test_split.get_allele(allele).peptides
)
if peptides_to_remove:
test_split = full_test_split.drop_allele_peptide_lists(
[allele] * len(peptides_to_remove),
peptides_to_remove)
logging.info(
"After dropping similar peptides, test size %d->%d" % (
len(full_test_split), len(test_split)))
else:
test_split = full_test_split
if imputer is not None:
imputation_future = executor.submit(
impute_and_select_allele,
all_allele_train_split,
imputer=imputer,
allele=allele,
**impute_kwargs)
else:
imputation_future = None
train_split = all_allele_train_split.get_allele(allele)
fold = AlleleSpecificTrainTestFold(
allele=allele,
train=train_split,
imputed_train=imputation_future,
result_folds.append(fold)
return [
result_fold._replace(imputed_train=(
result_fold.imputed_train.result()
if result_fold.imputed_train is not None
else None))
for result_fold in result_folds
]