Newer
Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import (
print_function,
division,
absolute_import,
)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import collections
import logging
from joblib import Parallel, delayed
import pepdata
from .train import impute_and_select_allele, AlleleSpecificTrainTestFold
gbmr4_transformer = pepdata.reduced_alphabet.make_alphabet_transformer("gbmr4")
def default_projector(peptide):
"""
Given a peptide, return a list of projections for it. The projections are:
- the gbmr4 reduced representation
- for all positions in the peptide, the peptide with a "." replacing
the residue at that position
Peptides with overlapping projections are considered similar when doing
cross validation.
Parameters
----------
peptide : string
Returns
----------
string list
"""
def projections(peptide, edit_distance=1):
if edit_distance == 0:
return set([peptide])
return set.union(*[
projections(p, edit_distance - 1)
for p in (
peptide[0:i] + "." + peptide[(i + 1):]
for i in range(len(peptide)))
])
return sorted(projections(peptide)) + [gbmr4_transformer(peptide)]
def similar_peptides(set1, set2, projector=default_projector):
"""
Given two sets of peptides, return a list of the peptides whose reduced
representations are found in both sets.
Parameters
----------
projector : (string -> string) or (string -> string list)
Function giving projection(s) of a peptide
Returns
----------
string list
"""
result = collections.defaultdict(lambda: ([], []))
for (index, peptides) in enumerate([set1, set2]):
for peptide in peptides:
projections = projector(peptide)
if not isinstance(projections, list):
projections = [projections]
for projection in projections:
result[projection][index].append(peptide)
common = set()
for (peptides1, peptides2) in result.values():
if peptides1 and peptides2:
common.update(peptides1 + peptides2)
return sorted(common)
def cross_validation_folds(
train_data,
alleles=None,
n_folds=3,
drop_similar_peptides=False,
imputer=None,
impute_kwargs={
'min_observations_per_peptide': 2,
'min_observations_per_allele': 2,
},
n_jobs=1,
verbose=0,
pre_dispatch='2*n_jobs'):
'''
Split a Dataset into n_folds cross validation folds for each allele,
optionally performing imputation.
Parameters
-----------
train_data : mhcflurry.Dataset
alleles : string list, optional
Alleles to run cross validation on. Default: all alleles in
train_data.
n_folds : int, optional
Number of cross validation folds for each allele.
drop_similar_peptides : boolean, optional
For each fold, remove peptides from the test data that are similar
to peptides in the train data. Similarity is defined as in the
similar_peptides function.
imputer : fancyimpute.Solver, optional
Imputer to use. If not specified, no imputation is done.
impute_kwargs : dict, optional
Additional kwargs to pass to mhcflurry.Dataset.impute_missing_values.
n_jobs : integer, optional
The number of jobs to run in parallel. If -1, then the number of jobs
is set to the number of cores.
verbose : integer, optional
The joblib verbosity. If non zero, progress messages are printed. Above
50, the output is sent to stdout. The frequency of the messages
increases with the verbosity level. If it more than 10, all iterations
are reported.
pre_dispatch : {"all", integer, or expression, as in "3*n_jobs"}
The number of joblib batches (of tasks) to be pre-dispatched. Default
is "2*n_jobs".
Returns
-----------
list of AlleleSpecificTrainTestFold of length num alleles * n_folds
'''
if alleles is None:
alleles = train_data.unique_alleles()
result = []
imputation_tasks = []
for allele in alleles:
logging.info("Allele: %s" % allele)
cv_iter = train_data.cross_validation_iterator(
allele, n_folds=n_folds, shuffle=True)
for (all_allele_train_split, full_test_split) in cv_iter:
peptides_to_remove = []
if drop_similar_peptides:
peptides_to_remove = similar_peptides(
all_allele_train_split.get_allele(allele).peptides,
full_test_split.get_allele(allele).peptides
)
if peptides_to_remove:
test_split = full_test_split.drop_allele_peptide_lists(
[allele] * len(peptides_to_remove),
peptides_to_remove)
logging.info(
"After dropping similar peptides, test size %d->%d" % (
len(full_test_split), len(test_split)))
else:
test_split = full_test_split
if imputer is not None:
imputation_tasks.append(delayed(impute_and_select_allele)(
all_allele_train_split,
imputer=imputer,
allele=allele,
**impute_kwargs))
train_split = all_allele_train_split.get_allele(allele)
fold = AlleleSpecificTrainTestFold(
allele=allele,
train=train_split,
imputed_train=None,
test=test_split)
result.append(fold)
if imputer is not None:
imputation_results = Parallel(
n_jobs=n_jobs,
verbose=verbose,
pre_dispatch=pre_dispatch)(imputation_tasks)
result = [
result_fold._replace(
imputed_train=imputation_result)
for (imputation_result, result_fold)
in zip(imputation_results, result)
if imputation_result is not None
]
return result