Skip to content
Snippets Groups Projects
cross_validation.py 6.59 KiB
Newer Older
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import (
    print_function,
    division,
    absolute_import,
)
import collections
import logging

from joblib import Parallel, delayed

import pepdata

from .train import impute_and_select_allele, AlleleSpecificTrainTestFold

gbmr4_transformer = pepdata.reduced_alphabet.make_alphabet_transformer("gbmr4")


def default_projector(peptide):
    """
    Given a peptide, return a list of projections for it. The projections are:
        - the gbmr4 reduced representation
        - for all positions in the peptide, the peptide with a "." replacing
          the residue at that position

    Peptides with overlapping projections are considered similar when doing
    cross validation.

    Parameters
    ----------
    peptide : string

    Returns
    ----------
    string list
    """
    def projections(peptide, edit_distance=1):
        if edit_distance == 0:
            return set([peptide])
        return set.union(*[
            projections(p, edit_distance - 1)
            for p in (
                peptide[0:i] + "." + peptide[(i + 1):]
                for i in range(len(peptide)))
        ])
    return sorted(projections(peptide)) + [gbmr4_transformer(peptide)]


def similar_peptides(set1, set2, projector=default_projector):
    """
    Given two sets of peptides, return a list of the peptides whose reduced
    representations are found in both sets.

    Parameters
    ----------
    projector : (string -> string) or (string -> string list)
        Function giving projection(s) of a peptide

    Returns
    ----------
    string list
    """
    result = collections.defaultdict(lambda: ([], []))
    for (index, peptides) in enumerate([set1, set2]):
        for peptide in peptides:
            projections = projector(peptide)
            if not isinstance(projections, list):
                projections = [projections]
            for projection in projections:
                result[projection][index].append(peptide)

    common = set()
    for (peptides1, peptides2) in result.values():
        if peptides1 and peptides2:
            common.update(peptides1 + peptides2)

    return sorted(common)


def cross_validation_folds(
        train_data,
        alleles=None,
        n_folds=3,
        drop_similar_peptides=False,
        imputer=None,
        impute_kwargs={
            'min_observations_per_peptide': 2,
            'min_observations_per_allele': 2,
        },
        n_jobs=1,
        verbose=0,
        pre_dispatch='2*n_jobs'):
    '''
    Split a Dataset into n_folds cross validation folds for each allele,
    optionally performing imputation.

    Parameters
    -----------
    train_data : mhcflurry.Dataset

    alleles : string list, optional
        Alleles to run cross validation on. Default: all alleles in
        train_data.

    n_folds : int, optional
        Number of cross validation folds for each allele.

    drop_similar_peptides : boolean, optional
        For each fold, remove peptides from the test data that are similar
        to peptides in the train data. Similarity is defined as in the
        similar_peptides function.

    imputer : fancyimpute.Solver, optional
        Imputer to use. If not specified, no imputation is done.

    impute_kwargs : dict, optional
        Additional kwargs to pass to mhcflurry.Dataset.impute_missing_values.

    n_jobs : integer, optional
        The number of jobs to run in parallel. If -1, then the number of jobs
        is set to the number of cores.

    verbose : integer, optional
        The joblib verbosity. If non zero, progress messages are printed. Above
        50, the output is sent to stdout. The frequency of the messages
        increases with the verbosity level. If it more than 10, all iterations
        are reported.

    pre_dispatch : {"all", integer, or expression, as in "3*n_jobs"}
        The number of joblib batches (of tasks) to be pre-dispatched. Default
        is "2*n_jobs".

    Returns
    -----------
    list of AlleleSpecificTrainTestFold of length num alleles * n_folds

    '''
    if alleles is None:
        alleles = train_data.unique_alleles()

    result = []
    imputation_tasks = []
    for allele in alleles:
        logging.info("Allele: %s" % allele)
        cv_iter = train_data.cross_validation_iterator(
            allele, n_folds=n_folds, shuffle=True)
        for (all_allele_train_split, full_test_split) in cv_iter:
            peptides_to_remove = []
            if drop_similar_peptides:
                peptides_to_remove = similar_peptides(
                    all_allele_train_split.get_allele(allele).peptides,
                    full_test_split.get_allele(allele).peptides
                )

            if peptides_to_remove:
                test_split = full_test_split.drop_allele_peptide_lists(
                    [allele] * len(peptides_to_remove),
                    peptides_to_remove)
                logging.info(
                    "After dropping similar peptides, test size %d->%d" % (
                        len(full_test_split), len(test_split)))
            else:
                test_split = full_test_split

            if imputer is not None:
                imputation_tasks.append(delayed(impute_and_select_allele)(
                    all_allele_train_split,
                    imputer=imputer,
                    allele=allele,
                    **impute_kwargs))

            train_split = all_allele_train_split.get_allele(allele)
            fold = AlleleSpecificTrainTestFold(
                allele=allele,
                train=train_split,
                imputed_train=None,
                test=test_split)
            result.append(fold)

    if imputer is not None:
        imputation_results = Parallel(
            n_jobs=n_jobs,
            verbose=verbose,
            pre_dispatch=pre_dispatch)(imputation_tasks)

        result = [
            result_fold._replace(
                imputed_train=imputation_result)
            for (imputation_result, result_fold)
            in zip(imputation_results, result)
            if imputation_result is not None
        ]
    return result