Skip to content
Snippets Groups Projects
encodable_sequences.py 7.41 KiB
Newer Older
Tim O'Donnell's avatar
Tim O'Donnell committed
# Copyright (c) 2016. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import (
    print_function,
    division,
    absolute_import,
)

import math

import numpy

Tim O'Donnell's avatar
Tim O'Donnell committed
from . import amino_acid


class EncodableSequences(object):
    """
    Sequences of amino acids.
    
    This class caches various encodings of a list of sequences.
    """
    unknown_character = "X"

    @classmethod
    def create(klass, sequences):
        """
        Factory that returns an EncodableSequences given a list of
        strings. As a convenience, you can also pass it an EncodableSequences
        instance, in which case the object is returned unchanged.
        """
        if isinstance(sequences, klass):
            return sequences
        return klass(sequences)

    def __init__(self, sequences):
        typechecks.require_iterable_of(
            sequences, typechecks.string_types, "sequences")
        self.sequences = numpy.array(sequences)
Tim O'Donnell's avatar
Tim O'Donnell committed
        self.encoding_cache = {}
        self.fixed_sequence_length = None
        if len(self.sequences) > 0 and all(
                len(s) == len(self.sequences[0]) for s in self.sequences):
            self.fixed_sequence_length = len(self.sequences[0])
Tim O'Donnell's avatar
Tim O'Donnell committed

    def __len__(self):
        return len(self.sequences)

    def variable_length_to_fixed_length_categorical(
            self, left_edge=4, right_edge=4, max_length=15):
        """
        Encode variable-length sequences using a fixed-length encoding designed
        for preserving the anchor positions of class I peptides.
        
        The sequences must be of length at least left_edge + right_edge, and at
        most max_length.
        
        Parameters
        ----------
        left_edge : int, size of fixed-position left side
        right_edge : int, size of the fixed-position right side
        max_length : sequence length of the resulting encoding

        Returns
        -------
        numpy.array of integers with shape (num sequences, max_length)
        """

        cache_key = (
            "fixed_length_categorical",
            left_edge,
            right_edge,
            max_length)

        if cache_key not in self.encoding_cache:
            fixed_length_sequences = (
                self.sequences_to_fixed_length_index_encoded_array(
                    self.sequences,
Tim O'Donnell's avatar
Tim O'Donnell committed
                    left_edge=left_edge,
                    right_edge=right_edge,
                    max_length=max_length))
            self.encoding_cache[cache_key] = fixed_length_sequences
Tim O'Donnell's avatar
Tim O'Donnell committed
        return self.encoding_cache[cache_key]

    def variable_length_to_fixed_length_vector_encoding(
            self, vector_encoding_name, left_edge=4, right_edge=4, max_length=15):
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        Encode variable-length sequences using a fixed-length encoding designed
        for preserving the anchor positions of class I peptides.

        The sequences must be of length at least left_edge + right_edge, and at
        most max_length.

        Parameters
        ----------
        vector_encoding_name : string
            How to represent amino acids.
            One of "BLOSUM62", "one-hot", etc. Full list of supported vector
            encodings is given by available_vector_encodings().
Tim O'Donnell's avatar
Tim O'Donnell committed
        left_edge : int, size of fixed-position left side
        right_edge : int, size of the fixed-position right side
        max_length : sequence length of the resulting encoding

        Returns
        -------
        numpy.array with shape (num sequences, max_length, m) where m is
        vector_encoding_length(vector_encoding_name)
Tim O'Donnell's avatar
Tim O'Donnell committed

Tim O'Donnell's avatar
Tim O'Donnell committed
        cache_key = (
            "fixed_length_vector_encoding",
            vector_encoding_name,
Tim O'Donnell's avatar
Tim O'Donnell committed
            left_edge,
            right_edge,
            max_length)
        if cache_key not in self.encoding_cache:
            fixed_length_sequences = (
                self.sequences_to_fixed_length_index_encoded_array(
                    self.sequences,
                    left_edge=left_edge,
                    right_edge=right_edge,
                    max_length=max_length))
Tim O'Donnell's avatar
Tim O'Donnell committed
            result = amino_acid.fixed_vectors_encoding(
                fixed_length_sequences,
                amino_acid.ENCODING_DFS[vector_encoding_name])
            assert result.shape[0] == len(self.sequences)
Tim O'Donnell's avatar
Tim O'Donnell committed
            self.encoding_cache[cache_key] = result
        return self.encoding_cache[cache_key]

    @classmethod
    def sequences_to_fixed_length_index_encoded_array(
            klass, sequences, left_edge=4, right_edge=4, max_length=15):
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        Transform a sequence of strings, where each string is of length at least
        left_edge + right_edge and at most max_length into strings of length
        max_length using a scheme designed to preserve the anchor positions of
        class I peptides.

Tim O'Donnell's avatar
Tim O'Donnell committed
        The first left_edge characters in the input always map to the first
        left_edge characters in the output. Similarly for the last right_edge
        characters. The middle characters are filled in based on the length,
        with the X character filling in the blanks.
Tim O'Donnell's avatar
Tim O'Donnell committed
        For example, using defaults:
Tim O'Donnell's avatar
Tim O'Donnell committed
        AAAACDDDD -> AAAAXXXCXXXDDDD

        The strings are also converted to int categorical amino acid indices.

Tim O'Donnell's avatar
Tim O'Donnell committed
        Parameters
        ----------
        sequence : string
        left_edge : int
        right_edge : int
        max_length : int

        Returns
        -------
        numpy array of shape (len(sequences), max_length, 21) and dtype int
Tim O'Donnell's avatar
Tim O'Donnell committed
        """
        result = numpy.ones(shape=(len(sequences), max_length), dtype=int) * -1
        fill_value = amino_acid.AMINO_ACID_INDEX['X']
        for (i, sequence) in enumerate(sequences):
            sequence_indexes = [
                amino_acid.AMINO_ACID_INDEX[char] for char in sequence
            ]

            if len(sequence) < left_edge + right_edge:
                raise ValueError(
                    "Sequence '%s' (length %d) unsupported: length must be at "
                    "least %d" % (
                    sequence, len(sequence), left_edge + right_edge))
            if len(sequence) > max_length:
                raise ValueError(
                    "Sequence '%s' (length %d) unsupported: length must be at "
                    "most %d" % (sequence, len(sequence), max_length))

            middle_length = max_length - left_edge - right_edge
            num_null = max_length - len(sequence)
            num_null_left = int(math.ceil(num_null / 2))
            num_null_right = int(math.floor(num_null / 2))
            num_not_null_middle = middle_length - num_null

            result[i] = numpy.concatenate([
                sequence_indexes[:left_edge],
                numpy.ones(num_null_left) * fill_value,
                sequence_indexes[left_edge:left_edge + num_not_null_middle],
                numpy.ones(num_null_right) * fill_value,
                sequence_indexes[-right_edge:],
            ])
            assert len(result[i]) == max_length
        return result