Newer
Older
"""
Filter and combine various peptide/MHC datasets to derive a composite training set,
optionally including eluted peptides identified by mass-spec.
"""
import sys
import argparse
import os
import pandas
import mhcnames
def normalize_allele_name(s):
try:
return mhcnames.normalize_allele_name(s)
except Exception:
return "UNKNOWN"
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
nargs="+",
action="append",
metavar="PMID FILE, ... FILE",
default=[],
"--expression-item",
nargs="+",
action="append",
metavar="LABEL FILE, ... FILE",
default=[],
help="Expression data to curate: dataset label and list of files")
parser.add_argument(
"--ms-out",
metavar="OUT.csv",
help="Out file path (MS data)")
parser.add_argument(
"--expression-out",
parser.add_argument(
"--expression-metadata-out",
metavar="OUT.csv",
help="Out file path for expression metadata, i.e. which samples used")
parser.add_argument(
"--debug",
action="store_true",
default=False,
help="Leave user in pdb if PMID is unsupported")
def load(filenames, **kwargs):
result = {}
for filename in filenames:
if filename.endswith(".csv"):
result[filename] = pandas.read_csv(filename, **kwargs)
elif filename.endswith(".xlsx") or filename.endswith(".xls"):
result[filename] = pandas.read_excel(filename, **kwargs)
else:
result[filename] = filename
return result
def debug(*filenames):
loaded = load(filenames)
import ipdb
ipdb.set_trace()
def handle_pmid_27600516(filename):
"""Gloger, ..., Neri Cancer Immunol Immunother 2016 [PMID 27600516]"""
df = pandas.read_csv(filename)
sample_to_peptides = {}
current_sample = None
for peptide in df.peptide:
if peptide.startswith("#"):
current_sample = peptide[1:]
sample_to_peptides[current_sample] = []
else:
assert current_sample is not None
sample_to_peptides[current_sample].append(peptide.strip().upper())
rows = []
for (sample, peptides) in sample_to_peptides.items():
for peptide in sorted(set(peptides)):
rows.append([sample, peptide])
result_df = pandas.DataFrame(rows, columns=["sample_id", "peptide"])
result_df["sample_type"] = "melanoma_cell_line"
result_df["cell_line"] = result_df.sample_id
result_df["mhc_class"] = "I"
result_df["pulldown_antibody"] = "W6/32"
result_df["format"] = "multiallelic"
result_df["hla"] = result_df.sample_id.map({
"FM-82": "HLA-A*02:01 HLA-A*01:01 HLA-B*08:01 HLA-B*15:01 HLA-C*03:04 HLA-C*07:01",
"FM-93/2": "HLA-A*02:01 HLA-A*26:01 HLA-B*40:01 HLA-B*44:02 HLA-C*03:04 HLA-C*05:01",
"Mel-624": "HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 HLA-B*14:01 HLA-C*07:02 HLA-C*08:02",
"MeWo": "HLA-A*02:01 HLA-A*26:01 HLA-B*14:02 HLA-B*38:01 HLA-C*08:02 HLA-C*12:03",
"SK-Mel-5": "HLA-A*02:01 HLA-A*11:01 HLA-B*40:01 HLA-C*03:03",
})
return result_df
"""Hassan, ..., van Veelen Mol Cell Proteomics 2015 [PMID 23481700]"""
df = pandas.read_excel(filename, skiprows=10)
assert df["Peptide sequence"].iloc[0] == "TPSLVKSTSQL"
assert df["Peptide sequence"].iloc[-1] == "LPHSVNSKL"
hla = {
"JY": "HLA-A*02:01 HLA-B*07:02 HLA-C*07:02",
"HHC": "HLA-A*02:01 HLA-B*07:02 HLA-B*44:02 HLA-C*05:01 HLA-C*07:02",
}
results = []
for sample_id in ["JY", "HHC"]:
hits_df = df.loc[
df["Int %s" % sample_id].map(
lambda x: {"n.q.": 0, "n.q": 0}.get(x, x)).astype(float) > 0
]
result_df = pandas.DataFrame({
"peptide": hits_df["Peptide sequence"].dropna().values,
})
result_df["sample_id"] = sample_id
result_df["cell_line"] = "B-LCL-" + sample_id
result_df["hla"] = hla[sample_id]
result_df["sample_type"] = "B-LCL"
result_df["mhc_class"] = "I"
result_df["format"] = "multiallelic"
result_df["pulldown_antibody"] = "W6/32"
results.append(result_df)
result_df = pandas.concat(results, ignore_index=True)
# Rename samples to avoid a collision with the JY sample in PMID 25576301.
result_df.sample_id = result_df.sample_id.map({
"JY": "JY.2015",
"HHC": "HHC.2015",
})
"""Mommen, ..., Heck PNAS 2014 [PMID 24616531]"""
df = pandas.read_excel(filename, sheet_name="EThcD")
peptides = df.Sequence.values
assert peptides[0] == "APFLRIAF"
assert peptides[-1] == "WRQAGLSYIRYSQI"
result_df["cell_line"] = "GR"
result_df["pulldown_antibody"] = "W6/32"
# Note: this publication lists hla as "HLA-A*01,-03, B*07,-27, and -C*02,-07"
# we are guessing the exact 4 digit alleles based on this.
result_df["hla"] = "HLA-A*01:01 HLA-A*03:01 HLA-B*07:02 HLA-B*27:05 HLA-C*02:02 HLA-C*07:01"
result_df["mhc_class"] = "I"
result_df["format"] = "multiallelic"
return result_df
"""Bassani-Sternberg, ..., Mann Mol Cell Proteomics 2015 [PMID 25576301]"""
df = pandas.read_excel(filename, sheet_name="Peptides")
assert peptides[0] == "AAAAAAAQSVY"
assert peptides[-1] == "YYYNGKAVY"
column_to_sample = {}
for s in [c for c in df if c.startswith("Intensity ")]:
assert s[-2] == "-"
column_to_sample[s] = s.replace("Intensity ", "")[:-2].strip()
intensity_columns = list(column_to_sample)
rows = []
for _, row in df.iterrows():
x1 = row[intensity_columns]
x2 = x1[x1 > 0].index.map(column_to_sample).value_counts()
x3 = x2[x2 >= 2] # require at least two replicates for each peptide
for sample in x3.index:
rows.append((row.Sequence, sample))
result_df = pandas.DataFrame(rows, columns=["peptide", "sample_id"])
result_df["pulldown_antibody"] = "W6/32"
result_df["mhc_class"] = "I"
result_df["format"] = "multiallelic"
allele_map = {
'Fib': "HLA-A*03:01 HLA-A*23:01 HLA-B*08:01 HLA-B*15:18 HLA-C*07:02 HLA-C*07:04",
'HCC1937': "HLA-A*23:01 HLA-A*24:02 HLA-B*07:02 HLA-B*40:01 HLA-C*03:04 HLA-C*07:02",
'SupB15WT': None, # four digit alleles unknown, will drop sample
'SupB15RT': None,
'HCT116': "HLA-A*01:01 HLA-A*02:01 HLA-B*45:01 HLA-B*18:01 HLA-C*05:01 HLA-C*07:01",
# Homozygous at HLA-A:
'HCC1143': "HLA-A*31:01 HLA-A*31:01 HLA-B*35:08 HLA-B*37:01 HLA-C*04:01 HLA-C*06:02",
# Homozygous everywhere:
'JY': "HLA-A*02:01 HLA-A*02:01 HLA-B*07:02 HLA-B*07:02 HLA-C*07:02 HLA-C*07:02",
}
sample_type = {
'Fib': "fibroblast",
'HCC1937': "basal like breast cancer",
'SupB15WT': None,
'SupB15RT': None,
'HCT116': "colon carcinoma",
'HCC1143': "basal like breast cancer",
'JY': "B-cell",
}
cell_line = {
'Fib': None,
'HCC1937': "HCC1937",
'SupB15WT': None,
'SupB15RT': None,
'HCT116': "HCT116",
'HCC1143': "HCC1143",
'JY': "JY",
}
result_df["hla"] = result_df.sample_id.map(allele_map)
print("Entries before dropping samples with unknown alleles", len(result_df))
result_df = result_df.loc[~result_df.hla.isnull()]
print("Entries after dropping samples with unknown alleles", len(result_df))
result_df["sample_type"] = result_df.sample_id.map(sample_type)
print(result_df.head(3))
return result_df
def handle_pmid_26992070(*filenames):
"""Ritz, ..., Fugmann Proteomics 2016 [PMID 26992070]"""
allele_text = """
Cell line HLA-A 1 HLA-A 2 HLA-B 1 HLA-B 2 HLA-C 1 HLA-C 2
HEK293 03:01 03:01 07:02 07:02 07:02 07:02
HL-60 01:01 01:01 57:01 57:01 06:02 06:02
RPMI8226 30:01 68:02 15:03 15:10 02:10 03:04
MAVER-1 24:02 26:01 38:01 44:02 05:01 12:03
THP-1 02:01 24:02 15:11 35:01 03:03 03:03
"""
allele_info = pandas.read_csv(
StringIO(allele_text), sep="\t", index_col=0)
allele_info.index = allele_info.index.str.strip()
for gene in ["A", "B", "C"]:
for num in ["1", "2"]:
allele_info[
"HLA-%s %s" % (gene, num)
cell_line_to_allele = allele_info.apply(" ".join, axis=1)
sheets = {}
for f in filenames:
if f.endswith(".xlsx"):
d = pandas.read_excel(f, sheet_name=None, skiprows=1)
sheets.update(d)
dfs = []
for cell_line in cell_line_to_allele.index:
# Using data from DeepQuanTR, which appears to be a consensus between
# two other methods used.
sheet = sheets[cell_line + "_DeepQuanTR"]
replicated = sheet.loc[
sheet[[c for c in sheet if "Sample" in c]].fillna(0).sum(1) > 1
]
df = pandas.DataFrame({
'peptide': replicated.Sequence.values
})
df["sample_id"] = cell_line
df["hla"] = cell_line_to_allele.get(cell_line)
dfs.append(df)
result_df = pandas.concat(dfs, ignore_index=True)
result_df["pulldown_antibody"] = "W6/32"
result_df["cell_line"] = result_df["sample_id"]
result_df["sample_type"] = result_df.sample_id.map({
"HEK293": "hek",
"HL-60": "neutrophil",
"RPMI8226": "b-cell",
"THP-1": "monocyte",
})
result_df["mhc_class"] = "I"
result_df["format"] = "multiallelic"
return result_df
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def handle_pmid_27412690(filename):
"""Shraibman, ..., Admon Mol Cell Proteomics 2016 [PMID 27412690]"""
hla_types = {
"U-87": "HLA-A*02:01 HLA-B*44:02 HLA-C*05:01",
"T98G": "HLA-A*02:01 HLA-B*39:06 HLA-C*07:02",
"LNT-229": "HLA-A*03:01 HLA-B*35:01 HLA-C*04:01",
}
sample_id_to_cell_line = {
"U-87": "U-87",
"T98G": "T98G",
"LNT-229": "LNT-229",
"U-87+DAC": "U-87",
"T98G+DAC": "T98G",
"LNT-229+DAC": "LNT-229",
}
df = pandas.read_excel(filename)
assert df.Sequence.iloc[0] == "AAAAAAGSGTPR"
intensity_col_to_sample_id = {}
for col in df:
if col.startswith("Intensity "):
sample_id = col.split()[1]
assert sample_id in sample_id_to_cell_line, (col, sample_id)
intensity_col_to_sample_id[col] = sample_id
dfs = []
for (sample_id, cell_line) in sample_id_to_cell_line.items():
intensity_cols = [
c for (c, v) in intensity_col_to_sample_id.items()
if v == sample_id
]
hits_df = df.loc[
(df[intensity_cols] > 0).sum(1) > 1
]
result_df = pandas.DataFrame({
"peptide": hits_df.Sequence.values,
})
result_df["sample_id"] = sample_id
result_df["cell_line"] = cell_line
result_df["hla"] = hla_types[cell_line]
dfs.append(result_df)
result_df = pandas.concat(dfs, ignore_index=True)
result_df["sample_type"] = "glioblastoma"
result_df["pulldown_antibody"] = "W6/32"
result_df["mhc_class"] = "I"
result_df["format"] = "multiallelic"
return result_df
def handle_pmid_28832583(*filenames):
"""Bassani-Sternberg, ..., Gfeller PLOS Comp. Bio. 2017 [PMID 28832583]"""
# This work also reanalyzes data from
# Pearson, ..., Perreault J Clin Invest 2016 [PMID 27841757]
(filename_dataset1, filename_dataset2) = sorted(filenames)
dataset1 = pandas.read_csv(filename_dataset1, sep="\t")
dataset2 = pandas.read_csv(filename_dataset2, sep="\t")
df = pandas.concat([dataset1, dataset2], ignore_index=True, sort=False)
info_text = """
cell_line origin original_pmid allele1 allele2 allele3 allele4 allele5 allele6
CD165 B-cell 28832583 HLA-A*02:05 HLA-A*24:02 HLA-B*15:01 HLA-B*50:01 HLA-C*03:03 HLA-C*06:02
CM467 B-cell 28832583 HLA-A*01:01 HLA-A*24:02 HLA-B*13:02 HLA-B*39:06 HLA-C*06:02 HLA-C*12:03
GD149 B-cell 28832583 HLA-A*01:01 HLA-A*24:02 HLA-B*38:01 HLA-B*44:03 HLA-C*06:02 HLA-C*12:03
MD155 B-cell 28832583 HLA-A*02:01 HLA-A*24:02 HLA-B*15:01 HLA-B*18:01 HLA-C*03:03 HLA-C*07:01
PD42 B-cell 28832583 HLA-A*02:06 HLA-A*24:02 HLA-B*07:02 HLA-B*55:01 HLA-C*01:02 HLA-C*07:02
RA957 B-cell 28832583 HLA-A*02:20 HLA-A*68:01 HLA-B*35:03 HLA-B*39:01 HLA-C*04:01 HLA-C*07:02
TIL1 TIL 28832583 HLA-A*02:01 HLA-A*02:01 HLA-B*18:01 HLA-B*38:01 HLA-C*05:01
TIL3 TIL 28832583 HLA-A*01:01 HLA-A*23:01 HLA-B*07:02 HLA-B*15:01 HLA-C*12:03 HLA-C*14:02
Apher1 Leukapheresis 28832583 HLA-A*03:01 HLA-A*29:02 HLA-B*44:02 HLA-B*44:03 HLA-C*12:03 HLA-C*16:01
Apher6 Leukapheresis 28832583 HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 HLA-C*07:02
pat_AC2 B-LCL 27841757 HLA-A*03:01 HLA-A*32:01 HLA-B*27:05 HLA-B*45:01
pat_C B-LCL 27841757 HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 HLA-C*07:02
pat_CELG B-LCL 27841757 HLA-A*02:01 HLA-A*24:02 HLA-B*15:01 HLA-B*73:01 HLA-C*03:03 HLA-C*15:05
pat_CP2 B-LCL 27841757 HLA-A*11:01 HLA-B*14:02 HLA-B*44:02
pat_FL B-LCL 27841757 HLA-A*03:01 HLA-A*11:01 HLA-B*44:03 HLA-B*50:01
pat_J B-LCL 27841757 HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 HLA-C*07:02
pat_JPB3 B-LCL 27841757 HLA-A*02:01 HLA-A*11:01 HLA-B*27:05 HLA-B*56:01
pat_JT2 B-LCL 27841757 HLA-A*11:01 HLA-B*18:03 HLA-B*35:01
pat_M B-LCL 27841757 HLA-A*03:01 HLA-A*29:02 HLA-B*08:01 HLA-B*44:03 HLA-C*07:01 HLA-C*16:01
pat_MA B-LCL 27841757 HLA-A*02:01 HLA-A*29:02 HLA-B*44:03 HLA-B*57:01 HLA-C*07:01 HLA-C*16:01
pat_ML B-LCL 27841757 HLA-A*02:01 HLA-A*11:01 HLA-B*40:01 HLA-B*44:03
pat_NS2 B-LCL 27841757 HLA-A*02:01 HLA-B*13:02 HLA-B*41:01
pat_NT B-LCL 27841757 HLA-A*01:01 HLA-A*32:01 HLA-B*08:01
pat_PF1 B-LCL 27841757 HLA-A*01:01 HLA-A*02:01 HLA-B*07:02 HLA-B*44:03 HLA-C*07:02 HLA-C*16:01
pat_R B-LCL 27841757 HLA-A*03:01 HLA-A*29:02 HLA-B*08:01 HLA-B*44:03 HLA-C*07:01 HLA-C*16:01
pat_RT B-LCL 27841757 HLA-A*01:01 HLA-A*02:01 HLA-B*18:01 HLA-B*39:24 HLA-C*05:01 HLA-C*07:01
pat_SR B-LCL 27841757 HLA-A*02:01 HLA-A*23:01 HLA-B*18:01 HLA-B*44:03
pat_ST B-LCL 27841757 HLA-A*03:01 HLA-A*24:02 HLA-B*07:02 HLA-B*27:05
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
"""
info_df = pandas.read_csv(StringIO(info_text), sep="\t", index_col=0)
info_df.index = info_df.index.str.strip()
info_df["hla"] = info_df[
[c for c in info_df if c.startswith("allele")]
].fillna("").apply(" ".join, axis=1)
results = []
for col in df.columns:
if col.startswith("Intensity "):
sample_id = col.replace("Intensity ", "")
assert sample_id in info_df.index, sample_id
peptides = df.loc[df[col].fillna(0) > 0].Sequence.unique()
result_df = pandas.DataFrame({"peptide": peptides})
result_df["sample_id"] = sample_id
result_df["hla"] = info_df.loc[sample_id].hla
result_df["sample_type"] = info_df.loc[sample_id].origin
result_df["original_pmid"] = str(
info_df.loc[sample_id].original_pmid)
results.append(result_df)
result_df = pandas.concat(results, ignore_index=True)
samples = result_df.sample_id.unique()
for sample_id in info_df.index:
assert sample_id in samples, (sample_id, samples)
result_df["mhc_class"] = "I"
result_df["format"] = "multiallelic"
result_df["cell_line"] = ""
result_df["pulldown_antibody"] = "W6/32"
return result_df
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
PMID_31495665_SAMPLE_TYPES = {
"HLA-DR_Lung": "lung",
"HLA-DR_PBMC_HDSC": "pbmc",
"HLA-DR_PBMC_RG1095": "pbmc",
"HLA-DR_PBMC_RG1104": "pbmc",
"HLA-DR_PBMC_RG1248": "pbmc",
"HLA-DR_Spleen": "spleen",
"MAPTAC_A*02:01": "mix:a375,expi293,hek293,hela",
"MAPTAC_A*11:01": "mix:expi293,hela",
"MAPTAC_A*32:01": "mix:a375,expi293,hela",
"MAPTAC_B*07:02": "mix:a375,expi293,hela",
"MAPTAC_B*45:01": "expi293",
"MAPTAC_B*52:01": "mix:a375,expi293",
"MAPTAC_C*03:03": "expi293",
"MAPTAC_C*06:02": "mix:a375,expi293",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm+": "expi293",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm-": "expi293",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm+": "expi293",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm-": "expi293",
"MAPTAC_DRB1*01:01": "mix:a375,b721,expi293,kg1,k562",
"MAPTAC_DRB1*03:01": "expi293",
"MAPTAC_DRB1*04:01": "expi293",
"MAPTAC_DRB1*07:01": "mix:expi293,hek293",
"MAPTAC_DRB1*11:01": "mix:expi293,k562,kg1",
"MAPTAC_DRB1*12:01_dm+": "expi293",
"MAPTAC_DRB1*12:01_dm-": "expi293",
"MAPTAC_DRB1*15:01": "expi293",
"MAPTAC_DRB3*01:01_dm+": "expi293",
"MAPTAC_DRB3*01:01_dm-": "expi293",
}
CELL_LINE_MIXTURES = sorted(
set(
x for x in PMID_31495665_SAMPLE_TYPES.values()
if x.startswith("mix:")))
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
def handle_pmid_31495665(filename):
"""Abelin, ..., Rooney Immunity 2019 [PMID 31495665]"""
hla_type = {
"HLA-DR_A375": None,
"HLA-DR_Lung": "DRB1*01:01 DRB1*03:01 DRB3*01:01",
"HLA-DR_PBMC_HDSC": "DRB1*03:01 DRB1*11:01 DRB3*01:01 DRB3*02:02",
"HLA-DR_PBMC_RG1095": "HLA-DRA1*01:01-DRB1*03:01 HLA-DRA1*01:01-DRB1*11:01 HLA-DRA1*01:01-DRB3*01:01 HLA-DRA1*01:01-DRB3*02:02",
"HLA-DR_PBMC_RG1104": "DRB1*01:01 DRB1*11:01 DRB3*02:02",
"HLA-DR_PBMC_RG1248": "DRB1*03:01 DRB1*03:01 DRB3*01:01 DRB3*01:01",
"HLA-DR_SILAC_Donor1_10minLysate": None,
"HLA-DR_SILAC_Donor1_5hrLysate": None,
"HLA-DR_SILAC_Donor1_DConly": None,
"HLA-DR_SILAC_Donor1_UVovernight": None,
"HLA-DR_SILAC_Donor2_DC_UV_16hr": None,
"HLA-DR_SILAC_Donor2_DC_UV_24hr": None,
"HLA-DR_Spleen": "DRB1*04:01 DRB4*01:03 DRB1*15:03 DRB5*01:01",
"MAPTAC_A*02:01": "HLA-A*02:01",
"MAPTAC_A*11:01": "HLA-A*11:01",
"MAPTAC_A*32:01": "HLA-A*32:01",
"MAPTAC_B*07:02": "HLA-B*07:02",
"MAPTAC_B*45:01": "HLA-B*45:01",
"MAPTAC_B*52:01": "HLA-B*52:01",
"MAPTAC_C*03:03": "HLA-C*03:03",
"MAPTAC_C*06:02": "HLA-C*06:02",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm+": "HLA-DPB1*06:01-DPA1*01:03",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm-": "HLA-DPB1*06:01-DPA1*01:03",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm+": "HLA-DQB1*06:04-DQA1*01:02",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm-": "HLA-DQB1*06:04-DQA1*01:02",
"MAPTAC_DRB1*01:01": "HLA-DRA1*01:01-DRB1*01:01",
"MAPTAC_DRB1*03:01": "HLA-DRA1*01:01-DRB1*03:01",
"MAPTAC_DRB1*04:01": "HLA-DRA1*01:01-DRB1*04:01",
"MAPTAC_DRB1*07:01": "HLA-DRA1*01:01-DRB1*07:01",
"MAPTAC_DRB1*11:01": "HLA-DRA1*01:01-DRB1*11:01",
"MAPTAC_DRB1*12:01_dm+": "HLA-DRA1*01:01-DRB1*12:01",
"MAPTAC_DRB1*12:01_dm-": "HLA-DRA1*01:01-DRB1*12:01",
"MAPTAC_DRB1*15:01": "HLA-DRA1*01:01-DRB1*15:01",
"MAPTAC_DRB3*01:01_dm+": "HLA-DRA1*01:01-DRB3*01:01",
"MAPTAC_DRB3*01:01_dm-": "HLA-DRA1*01:01-DRB3*01:01",
}
pulldown_antibody = {
"HLA-DR_Lung": "L243 (HLA-DR)",
"HLA-DR_PBMC_HDSC": "tal1b5 (HLA-DR)",
"HLA-DR_PBMC_RG1095": "tal1b5 (HLA-DR)",
"HLA-DR_PBMC_RG1104": "tal1b5 (HLA-DR)",
"HLA-DR_PBMC_RG1248": "tal1b5 (HLA-DR)",
"HLA-DR_Spleen": "L243 (HLA-DR)",
"MAPTAC_A*02:01": "MAPTAC",
"MAPTAC_A*11:01": "MAPTAC",
"MAPTAC_A*32:01": "MAPTAC",
"MAPTAC_B*07:02": "MAPTAC",
"MAPTAC_B*45:01": "MAPTAC",
"MAPTAC_B*52:01": "MAPTAC",
"MAPTAC_C*03:03": "MAPTAC",
"MAPTAC_C*06:02": "MAPTAC",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm+": "MAPTAC",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm-": "MAPTAC",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm+": "MAPTAC",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm-": "MAPTAC",
"MAPTAC_DRB1*01:01": "MAPTAC",
"MAPTAC_DRB1*03:01": "MAPTAC",
"MAPTAC_DRB1*04:01": "MAPTAC",
"MAPTAC_DRB1*07:01": "MAPTAC",
"MAPTAC_DRB1*11:01": "MAPTAC",
"MAPTAC_DRB1*12:01_dm+": "MAPTAC",
"MAPTAC_DRB1*12:01_dm-": "MAPTAC",
"MAPTAC_DRB1*15:01": "MAPTAC",
"MAPTAC_DRB3*01:01_dm+": "MAPTAC",
"MAPTAC_DRB3*01:01_dm-": "MAPTAC",
}
format = {
"HLA-DR_Lung": "DR-specific",
"HLA-DR_PBMC_HDSC": "DR-specific",
"HLA-DR_PBMC_RG1095": "DR-specific",
"HLA-DR_PBMC_RG1104": "DR-specific",
"HLA-DR_PBMC_RG1248": "DR-specific",
"HLA-DR_Spleen": "DR-specific",
"MAPTAC_A*02:01": "monoallelic",
"MAPTAC_A*11:01": "monoallelic",
"MAPTAC_A*32:01": "monoallelic",
"MAPTAC_B*07:02": "monoallelic",
"MAPTAC_B*45:01": "monoallelic",
"MAPTAC_B*52:01": "monoallelic",
"MAPTAC_C*03:03": "monoallelic",
"MAPTAC_C*06:02": "monoallelic",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm+": "monoallelic",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm-": "monoallelic",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm+": "monoallelic",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm-": "monoallelic",
"MAPTAC_DRB1*01:01": "monoallelic",
"MAPTAC_DRB1*03:01": "monoallelic",
"MAPTAC_DRB1*04:01": "monoallelic",
"MAPTAC_DRB1*07:01": "monoallelic",
"MAPTAC_DRB1*11:01": "monoallelic",
"MAPTAC_DRB1*12:01_dm+": "monoallelic",
"MAPTAC_DRB1*12:01_dm-": "monoallelic",
"MAPTAC_DRB1*15:01": "monoallelic",
"MAPTAC_DRB3*01:01_dm+": "monoallelic",
"MAPTAC_DRB3*01:01_dm-": "monoallelic",
}
mhc_class = {
"HLA-DR_Lung": "II",
"HLA-DR_PBMC_HDSC": "II",
"HLA-DR_PBMC_RG1095": "II",
"HLA-DR_PBMC_RG1104": "II",
"HLA-DR_PBMC_RG1248": "II",
"HLA-DR_Spleen": "II",
"MAPTAC_A*02:01": "I",
"MAPTAC_A*11:01": "I",
"MAPTAC_A*32:01": "I",
"MAPTAC_B*07:02": "I",
"MAPTAC_B*45:01": "I",
"MAPTAC_B*52:01": "I",
"MAPTAC_C*03:03": "I",
"MAPTAC_C*06:02": "I",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm+": "II",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm-": "II",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm+": "II",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm-": "II",
"MAPTAC_DRB1*01:01": "II",
"MAPTAC_DRB1*03:01": "II",
"MAPTAC_DRB1*04:01": "II",
"MAPTAC_DRB1*07:01": "II",
"MAPTAC_DRB1*11:01": "II",
"MAPTAC_DRB1*12:01_dm+": "II",
"MAPTAC_DRB1*12:01_dm-": "II",
"MAPTAC_DRB1*15:01": "II",
"MAPTAC_DRB3*01:01_dm+": "II",
"MAPTAC_DRB3*01:01_dm-": "II",
}
cell_line = {
"HLA-DR_Lung": "",
"HLA-DR_PBMC_HDSC": "",
"HLA-DR_PBMC_RG1095": "",
"HLA-DR_PBMC_RG1104": "",
"HLA-DR_PBMC_RG1248": "",
"HLA-DR_Spleen": "",
"MAPTAC_A*02:01": "",
"MAPTAC_A*11:01": "",
"MAPTAC_A*32:01": "",
"MAPTAC_B*07:02": "",
"MAPTAC_C*06:02": "",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm+": "expi293",
"MAPTAC_DPB1*06:01/DPA1*01:03_dm-": "expi293",
"MAPTAC_DQB1*06:04/DQA1*01:02_dm+": "expi293", # don't actually see this in DataS1A!
"MAPTAC_DQB1*06:04/DQA1*01:02_dm-": "expi293",
"MAPTAC_DRB1*01:01": "",
"MAPTAC_DRB1*03:01": "expi293",
"MAPTAC_DRB1*04:01": "expi293",
"MAPTAC_DRB1*12:01_dm+": "expi293",
"MAPTAC_DRB1*12:01_dm-": "expi293",
"MAPTAC_DRB1*15:01": "expi293",
"MAPTAC_DRB3*01:01_dm+": "expi293",
"MAPTAC_DRB3*01:01_dm-": "expi293",
results = []
for sample_id in df.columns:
if hla_type[sample_id] is None:
print("Intentionally skipping", sample_id)
continue
result_df = pandas.DataFrame({
"peptide": df[sample_id].dropna().values,
})
result_df["sample_id"] = sample_id
result_df["hla"] = hla_type[sample_id]
result_df["pulldown_antibody"] = pulldown_antibody[sample_id]
result_df["format"] = format[sample_id]
result_df["mhc_class"] = mhc_class[sample_id]
result_df["cell_line"] = cell_line[sample_id]
results.append(result_df)
result_df = pandas.concat(results, ignore_index=True)
return result_df
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
def handle_pmid_27869121(filename):
"""Bassani-Sternberg, ..., Krackhardt Nature Comm. 2016 [PMID 27869121]"""
# Although this dataset has class II data also, we are only extracting
# class I for now.
df = pandas.read_excel(filename, skiprows=1)
# Taking these from:
# Supplementary Table 2: Information of patients selected for neoepitope
# identification
# For the Mel5 sample, only two-digit alleles are shown (A*01, A*25,
# B*08, B*18) so we are skipping that sample for now.
hla_df = pandas.DataFrame([
("Mel-8", "HLA-A*01:01 HLA-A*03:01 HLA-B*07:02 HLA-B*08:01 HLA-C*07:01 HLA-C*07:02"),
("Mel-12", "HLA-A*01:01 HLA-B*08:01 HLA-C*07:01"),
("Mel-15", "HLA-A*03:01 HLA-A*68:01 HLA-B*27:05 HLA-B*35:03 HLA-C*02:02 HLA-C*04:01"),
("Mel-16", "HLA-A*01:01 HLA-A*24:02 HLA-B*07:02 HLA-B*08:01 HLA-C*07:01 HLA-C*07:02"),
], columns=["sample_id", "hla"]).set_index("sample_id")
# We assert below that none of the class I hit peptides were found in any
# of the class II pull downs.
class_ii_cols = [
c for c in df.columns if c.endswith("HLA-II (arbitrary units)")
]
class_ii_hits = set(df.loc[
(df[class_ii_cols].fillna(0.0).sum(1) > 0)
].Sequence.unique())
results = []
for (sample_id, hla) in hla_df.hla.items():
intensity_col = "Intensity %s_HLA-I (arbitrary units)" % sample_id
sub_df = df.loc[
(df[intensity_col].fillna(0.0) > 0)
]
filtered_sub_df = sub_df.loc[
(~sub_df.Sequence.isin(class_ii_hits))
]
peptides = filtered_sub_df.Sequence.unique()
assert not any(p in class_ii_hits for p in peptides)
result_df = pandas.DataFrame({
"peptide": peptides,
})
result_df["sample_id"] = sample_id
result_df["hla"] = hla_df.loc[sample_id, "hla"]
result_df["pulldown_antibody"] = "W6/32"
result_df["format"] = "multiallelic"
result_df["mhc_class"] = "I"
result_df["sample_type"] = "melanoma_met"
result_df["cell_line"] = None
results.append(result_df)
result_df = pandas.concat(results, ignore_index=True)
return result_df
def handle_pmid_31154438(*filenames):
"""Shraibman, ..., Admon Mol Cell Proteomics 2019 [PMID 31154438]"""
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# Note: this publication also includes analyses of the secreted HLA
# peptidedome (sHLA) but we are using only the data from membrane-bound
# HLA.
(xls, txt) = sorted(filenames, key=lambda s: not s.endswith(".xlsx"))
info = pandas.read_excel(xls, skiprows=1)
df = pandas.read_csv(txt, sep="\t", skiprows=1)
hla_df = info.loc[
~info["mHLA tissue sample"].isnull()
].set_index("mHLA tissue sample")[["HLA typing"]]
def fix_hla(string):
result = []
alleles = string.split(";")
for a in alleles:
a = a.strip()
if "/" in a:
(a1, a2) = a.split("/")
a2 = a1[:2] + a2
lst = [a1, a2]
else:
lst = [a]
for a in lst:
normalized = normalize_allele_name(a)
# Ignore class II
if normalized[4] in ("A", "B", "C"):
result.append(normalized)
return " ".join(result)
hla_df["hla"] = hla_df["HLA typing"].map(fix_hla)
results = []
for (sample_id, hla) in hla_df.hla.items():
intensity_col = "Intensity %s" % sample_id
sub_df = df.loc[
(df[intensity_col].fillna(0.0) > 0)
]
peptides = sub_df.Sequence.unique()
result_df = pandas.DataFrame({
"peptide": peptides,
})
result_df["sample_id"] = sample_id
result_df["hla"] = hla_df.loc[sample_id, "hla"]
result_df["pulldown_antibody"] = "W6/32"
result_df["format"] = "multiallelic"
result_df["mhc_class"] = "I"
result_df["sample_type"] = "glioblastoma_tissue"
result_df["cell_line"] = None
results.append(result_df)
result_df = pandas.concat(results, ignore_index=True)
return result_df
result_df = pandas.DataFrame(index=df.index)
for (label, columns) in groups.items():
for col in columns:
if col not in df.columns:
raise ValueError(
"Missing: %s. Available: %s" % (col, df.columns.tolist()))
EXPRESSION_GROUPS_ROWS.append((dataset_identifier, label, columns))
return result_df
def handle_expression_GSE113126(*filenames):
"""
Barry, ..., Krummel Nature Medicine 2018 [PMID 29942093]
This is the melanoma met RNA-seq dataset.
"""
df = pandas.read_csv(filenames[0], sep="\t", index_col=0)
df = df[[]] # no columns
for filename in filenames:
df[os.path.basename(filename)] = pandas.read_csv(
filename, sep="\t", index_col=0)["TPM"]
assert len(df.columns) == len(filenames)
groups = {
"sample_type:MELANOMA_MET": df.columns.tolist(),
}
def handle_expression_expression_atlas_22460905(filename):
df = pandas.read_csv(filename, sep="\t", skiprows=4, index_col=0)
del df["Gene Name"]
df.columns = df.columns.str.lower()
df = df.fillna(0.0)
def matches(*strings):
return [c for c in df.columns if all(s in c for s in strings)]
groups = {
"sample_type:B-LCL": (
matches("b-cell", "lymphoblast") + matches("b acute lymphoblastic")),
"sample_type:B-CELL": matches("b-cell"),
"sample_type:A375-LIKE": matches("melanoma"),
"sample_type:KG1-LIKE": matches("myeloid leukemia"),
# Using a fibrosarcoma cell line for our fibroblast sample.
"sample_type:FIBROBLAST": ['fibrosarcoma, ht-1080'],
# For GBM tissue we are just using a mixture of cell lines.
"sample_type:GLIOBLASTOMA_TISSUE": matches("glioblastoma"),
"cell_line:THP-1": ["childhood acute monocytic leukemia, thp-1"],
"cell_line:HL-60": ["adult acute myeloid leukemia, hl-60"],
"cell_line:U-87": ['glioblastoma, u-87 mg'],
"cell_line:LNT-229": ['glioblastoma, ln-229'],
"cell_line:T98G": ['glioblastoma, t98g'],
"cell_line:SK-MEL-5": ['cutaneous melanoma, sk-mel-5'],
'cell_line:MEWO': ['melanoma, mewo'],
"cell_line:HCC1937": ['breast ductal adenocarcinoma, hcc1937'],
"cell_line:HCT116": ['colon carcinoma, hct 116'],
"cell_line:HCC1143": ['breast ductal adenocarcinoma, hcc1143'],
}
return [make_expression_groups("expression_atlas_22460905", df, groups)]
def handle_expression_human_protein_atlas(*filenames):
(cell_line_filename,) = [f for f in filenames if "celline" in f]
(blood_filename,) = [f for f in filenames if "blood" in f]
(gtex_filename,) = [f for f in filenames if "gtex" in f]
cell_line_df = pandas.read_csv(cell_line_filename, sep="\t")
blood_df = pandas.read_csv(blood_filename, sep="\t", index_col=0)
gtex_df = pandas.read_csv(gtex_filename, sep="\t")
cell_line_df = cell_line_df.pivot(
index="Gene", columns="Cell line", values="TPM")
gtex_df = gtex_df.pivot(
index="Gene", columns="Tissue", values="TPM")
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
return [
make_expression_groups(
"human_protein_atlas:%s" % os.path.basename(blood_filename),
blood_df,
groups={
"sample_type:PBMC": [
c for c in blood_df.columns if "total PBMC" in c
],
# for samples labeled leukapheresis we also use PBMC
"sample_type:LEUKAPHERESIS": [
c for c in blood_df.columns if "total PBMC" in c
],
# for samples labeled TIL we are also using PBMC
"sample_type:TIL": [
c for c in blood_df.columns if "total PBMC" in c
],
}),
make_expression_groups(
"human_protein_atlas:%s" % os.path.basename(cell_line_filename),
cell_line_df,
groups={
"cell_line:HELA": ['HeLa'],
"cell_line:K562": ["K-562"],
"cell_line:HEK293": ['HEK 293'],
"cell_line:RPMI8226": ['RPMI-8226'],
"cell_line:EXPI293": ['HEK 293'], # EXPI293 derived from HEK293
}),
make_expression_groups(
"human_protein_atlas:%s" % os.path.basename(gtex_filename),
gtex_df,
groups={
"sample_type:LUNG": ["lung"],
"sample_type:SPLEEN": ["spleen"],
}),
]
def make_expression_mixtures(expression_df):
global CELL_LINE_MIXTURES
groups = {}
for mix in CELL_LINE_MIXTURES:
components = []
for item in mix.replace("mix:", "").upper().split(","):
if "cell_line:%s" % item in expression_df.columns:
components.append("cell_line:%s" % item)
else:
print("No cell line, falling back on similar: ", item)
components.append("sample_type:%s-LIKE" % item)
groups["sample_type:" + mix.upper()] = components
missing = set()
for some in groups.values():
for item in some:
if item not in expression_df.columns:
missing.add(item)
if missing:
raise ValueError(
"Missing [%d]: %s. Available: %s" % (
len(missing), missing, expression_df.columns.tolist()))
return make_expression_groups("mixtures", expression_df, groups)
# Add all functions with names like handle_pmid_XXXX to PMID_HANDLERS dict.
for (key, value) in list(locals().items()):
if key.startswith("handle_pmid_"):
PMID_HANDLERS[key.replace("handle_pmid_", "")] = value
elif key.startswith("handle_expression_"):
EXPRESSION_HANDLERS[key.replace("handle_expression_", "")] = value
def run():
args = parser.parse_args(sys.argv[1:])
expression_dfs = []
for (i, item_tpl) in enumerate(args.expression_item):
(label, filenames) = (item_tpl[0], item_tpl[1:])
label = label.replace("-", "_")
print(
"Processing expression item %d of %d" % (i + 1, len(args.expression_item)),
label,
*[os.path.abspath(f) for f in filenames])
handler = None
if label in EXPRESSION_HANDLERS:
handler = EXPRESSION_HANDLERS[label]
elif args.debug:
debug(*filenames)
else:
raise NotImplementedError(label)
"result dataframes",
len(expression_dfs_for_item))
print(*[e.columns for e in expression_dfs_for_item])
expression_dfs.extend(expression_dfs_for_item)
expression_df = expression_dfs[0]
for other in expression_dfs[1:]:
expression_df = pandas.merge(
expression_df, other, how='outer', left_index=True, right_index=True)
*[len(e) for e in expression_dfs])
print("Genes in merged expression dataframe", len(expression_df))
if CELL_LINE_MIXTURES:
print("Generating cell line mixtures.")
expression_mixture_df = make_expression_mixtures(expression_df)
expression_df = pandas.merge(
expression_df,
expression_mixture_df,
how='outer',
left_index=True,
right_index=True)
if pmid in PMID_HANDLERS:
handler = PMID_HANDLERS[pmid]
ms_df = handler(*filenames)
raise NotImplementedError(pmid)
if ms_df is not None:
ms_df["pmid"] = pmid
if "original_pmid" not in ms_df.columns:
ms_df["original_pmid"] = pmid
if "expression_dataset" not in ms_df.columns:
ms_df["expression_dataset"] = ""
ms_df = ms_df.applymap(str).applymap(str.upper)
ms_df["sample_id"] = ms_df.sample_id.str.replace(" ", "")
print("*** PMID %s: %d peptides ***" % (pmid, len(ms_df)))