Newer
Older
"""
Filter and combine various peptide/MHC datasets to derive a composite training set,
optionally including eluted peptides identified by mass-spec.
"""
import sys
import argparse
import os
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import pandas
import mhcnames
def normalize_allele_name(s):
try:
return mhcnames.normalize_allele_name(s)
except Exception:
return "UNKNOWN"
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
"--item",
nargs="+",
action="append",
metavar="PMID FILE, ... FILE",
default=[],
help="Item to curate: PMID and list of files")
parser.add_argument(
"--out",
metavar="OUT.csv",
help="Out file path")
parser.add_argument(
"--debug",
action="store_true",
default=False,
help="Leave user in pdb if PMID is unsupported")
HANDLERS = {}
def load(filenames, **kwargs):
result = {}
for filename in filenames:
if filename.endswith(".csv"):
result[filename] = pandas.read_csv(filename, **kwargs)
elif filename.endswith(".xlsx") or filename.endswith(".xls"):
result[filename] = pandas.read_excel(filename, **kwargs)
else:
result[filename] = filename
return result
def debug(*filenames):
loaded = load(filenames)
import ipdb
ipdb.set_trace()
def handle_pmid_27600516(filename):
df = pandas.read_csv(filename)
sample_to_peptides = {}
current_sample = None
for peptide in df.peptide:
if peptide.startswith("#"):
current_sample = peptide[1:]
sample_to_peptides[current_sample] = []
else:
assert current_sample is not None
sample_to_peptides[current_sample].append(peptide.strip().upper())
rows = []
for (sample, peptides) in sample_to_peptides.items():
for peptide in sorted(set(peptides)):
rows.append([sample, peptide])
result = pandas.DataFrame(rows, columns=["sample_id", "peptide"])
result["sample_type"] = "melanoma_cell_line"
return result
def handle_pmid_23481700(filename):
df = pandas.read_excel(filename)
peptides = df.iloc[10:,0].values
assert peptides[0] == "TPSLVKSTSQL"
assert peptides[-1] == "LPHSVNSKL"
result = pandas.DataFrame({
"peptide": peptides,
})
result["sample_id"] = "23481700"
result["sample_type"] = "B-LCL"
return result
def handle_pmid_24616531(filename):
df = pandas.read_excel(filename, sheetname="EThcD")
peptides = df.Sequence.values
assert peptides[0] == "APFLRIAF"
assert peptides[-1] == "WRQAGLSYIRYSQI"
result = pandas.DataFrame({
"peptide": peptides,
})
result["sample_id"] = "24616531"
result["sample_type"] = "B-lymphoblastoid"
result["cell_line"] = "GR"
result["pulldown_antibody"] = "W6/32"
# Note: this publication lists hla as "HLA-A*01,-03, B*07,-27, and -C*02,-07"
# we are guessing the exact 4 digit alleles based on this.
result["hla"] = "HLA-A*01:01 HLA-A*03:01 HLA-B*07:02 HLA-B*27:05 HLA-C*02:02 HLA-C*07:01"
return result
def handle_pmid_25576301(filename):
df = pandas.read_excel(filename, sheetname="Peptides")
peptides = df.Sequence.values
assert peptides[0] == "AAAAAAAQSVY"
assert peptides[-1] == "YYYNGKAVY"
column_to_sample = {}
for s in [c for c in df if c.startswith("Intensity ")]:
assert s[-2] == "-"
column_to_sample[s] = s.replace("Intensity ", "")[:-2].strip()
intensity_columns = list(column_to_sample)
rows = []
for _, row in df.iterrows():
x1 = row[intensity_columns]
x2 = x1[x1 > 0].index.map(column_to_sample).value_counts()
x3 = x2[x2 >= 2] # require at least two replicates for each peptide
for sample in x3.index:
rows.append((row.Sequence, sample))
result = pandas.DataFrame(rows, columns=["peptide", "sample_id"])
result["cell_line"] = ""
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
allele_map = {
'Fib': "HLA-A*03:01 HLA-A*23:01 HLA-B*08:01 HLA-B*15:18 HLA-C*07:02 HLA-C*07:04",
'HCC1937': "HLA-A*23:01 HLA-A*24:02 HLA-B*07:02 HLA-B*40:01 HLA-C*03:04 HLA-C*07:02",
'SupB15WT': None, # four digit alleles unknown, will drop sample
'SupB15RT': None,
'HCT116': "HLA-A*01:01 HLA-A*02:01 HLA-B*45:01 HLA-B*18:01 HLA-C*05:01 HLA-C*07:01",
# Homozygous at HLA-A:
'HCC1143': "HLA-A*31:01 HLA-A*31:01 HLA-B*35:08 HLA-B*37:01 HLA-C*04:01 HLA-C*06:02",
# Homozygous everywhere:
'JY': "HLA-A*02:01 HLA-A*02:01 HLA-B*07:02 HLA-B*07:02 HLA-C*07:02 HLA-C*07:02",
}
sample_type = {
'Fib': "fibroblast",
'HCC1937': "basal like breast cancer",
'SupB15WT': None,
'SupB15RT': None,
'HCT116': "colon carcinoma",
'HCC1143': "basal like breast cancer",
'JY': "B-cell",
}
result["hla"] = result.sample_id.map(allele_map)
print("Entries before dropping samples with unknown alleles", len(result))
result = result.loc[~result.hla.isnull()]
print("Entries after dropping samples with unknown alleles", len(result))
result["sample_type"] = result.sample_id.map(sample_type)
print(result.head(3))
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
return result
# Hack to add all functions with names like handle_pmid_XXXX to HANDLERS dict.
for (key, value) in list(locals().items()):
if key.startswith("handle_pmid_"):
HANDLERS[key.replace("handle_pmid_", "")] = value
def run():
args = parser.parse_args(sys.argv[1:])
dfs = []
for item_tpl in args.item:
(pmid, filenames) = (item_tpl[0], item_tpl[1:])
print("Processing item", pmid, *[os.path.abspath(f) for f in filenames])
df = None
if pmid in HANDLERS:
df = HANDLERS[pmid](*filenames)
elif args.debug:
debug(*filenames)
else:
raise NotImplementedError(args.pmid)
if df is not None:
df["pmid"] = pmid
print("*** PMID %s: %d peptides ***" % (pmid, len(df)))
print("Counts by sample id:")
print(df.groupby("sample_id").peptide.nunique())
print("")
print("Counts by sample type:")
print(df.groupby("sample_type").peptide.nunique())
print("****************************")
dfs.append(df)
df = pandas.concat(dfs, ignore_index=True)
df.to_csv(args.out, index=False)
print("Wrote: %s" % args.out)
if __name__ == '__main__':
run()