Newer
Older
from .hyperparameters import HyperparameterDefaults
from .class1_neural_network import Class1NeuralNetwork, DEFAULT_PREDICT_BATCH_SIZE
from .encodable_sequences import EncodableSequences
from .regression_target import from_ic50, to_ic50
from .random_negative_peptides import RandomNegativePeptides
from .allele_encoding import MultipleAlleleEncoding, AlleleEncoding
from .auxiliary_input import AuxiliaryInputEncoder
class Class1LigandomePredictor(object):
network_hyperparameter_defaults = HyperparameterDefaults(
allele_amino_acid_encoding="BLOSUM62",
peptide_encoding={
'vector_encoding_name': 'BLOSUM62',
'alignment_method': 'left_pad_centered_right_pad',
'max_length': 15,
},
)
"""
Hyperparameters (and their default values) that affect the neural network
architecture.
"""
fit_hyperparameter_defaults = HyperparameterDefaults(
max_epochs=500,
validation_split=0.1,
early_stopping=True,
minibatch_size=128,
random_negative_affinity_min=20000.0,).extend(
)
"""
Hyperparameters for neural network training.
"""
early_stopping_hyperparameter_defaults = HyperparameterDefaults(
patience=20,
min_delta=0.0,
)
"""
Hyperparameters for early stopping.
"""
compile_hyperparameter_defaults = HyperparameterDefaults(
loss_multiallelic_mass_spec_delta=0.2,
loss_multiallelic_mass_spec_multiplier=1.0,
"""
Loss and optimizer hyperparameters. Any values supported by keras may be
used.
"""
auxiliary_input_hyperparameter_defaults = HyperparameterDefaults(
auxiliary_input_features=["gene"],
auxiliary_input_feature_parameters={},
)
"""
Allele feature hyperparameters.
"""
hyperparameter_defaults = network_hyperparameter_defaults.extend(
fit_hyperparameter_defaults).extend(
early_stopping_hyperparameter_defaults).extend(
def __init__(
self,
class1_affinity_predictor,
max_ensemble_size=None,
**hyperparameters):
if not class1_affinity_predictor.class1_pan_allele_models:
raise NotImplementedError("Pan allele models required")
if class1_affinity_predictor.allele_to_allele_specific_models:
raise NotImplementedError("Only pan allele models are supported")
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
hyperparameters)
models = class1_affinity_predictor.class1_pan_allele_models
if max_ensemble_size is not None:
models = models[:max_ensemble_size]
self.network = self.make_network(
models,
self.hyperparameters)
self.fit_info = []
self.allele_to_sequence = class1_affinity_predictor.allele_to_sequence
self.allele_representation_hash = None
@staticmethod
def make_network(pan_allele_class1_neural_networks, hyperparameters):
from keras.layers import (
Input,
TimeDistributed,
Dense,
Flatten,
RepeatVector,
concatenate,
networks = [
model.network() for model in pan_allele_class1_neural_networks
]
merged_ensemble = Class1NeuralNetwork.merge(
networks,
merge_method="average")
peptide_shape = tuple(
int(x) for x in K.int_shape(merged_ensemble.inputs[0])[1:])
input_alleles = Input(
shape=(hyperparameters['max_alleles'],), name="allele")
input_peptides = Input(
shape=peptide_shape,
dtype='float32',
name='peptide')
peptides_flattened = Flatten()(input_peptides)
peptides_repeated = RepeatVector(hyperparameters['max_alleles'])(
peptides_flattened)
allele_representation = Embedding(
name="allele_representation",
input_dim=64, # arbitrary, how many alleles to have room for
output_dim=1029,
#allele_flat = Reshape((6, -1), name="allele_flat")(allele_representation)
allele_flat = allele_representation
allele_peptide_merged = concatenate(
[peptides_repeated, allele_flat], name="allele_peptide_merged")
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
layer_names = [
layer.name for layer in merged_ensemble.layers
]
pan_allele_layer_initial_names = [
'allele', 'peptide',
'allele_representation', 'flattened_0', 'allele_flat',
'allele_peptide_merged', 'dense_0', 'dropout_0',
]
def startswith(lst, prefix):
return lst[:len(prefix)] == prefix
assert startswith(layer_names, pan_allele_layer_initial_names), layer_names
layers = merged_ensemble.layers[
pan_allele_layer_initial_names.index(
"allele_peptide_merged") + 1:
]
node = allele_peptide_merged
layer_name_to_new_node = {
"allele_peptide_merged": allele_peptide_merged,
}
for layer in layers:
assert layer.name not in layer_name_to_new_node
input_layer_names = []
for inbound_node in layer._inbound_nodes:
for inbound_layer in inbound_node.inbound_layers:
input_layer_names.append(inbound_layer.name)
input_nodes = [
layer_name_to_new_node[name]
for name in input_layer_names
]
if len(input_nodes) == 1:
lifted = TimeDistributed(layer)
node = layer(input_nodes)
print(layer, layer.name, node, lifted)
layer_name_to_new_node[layer.name] = node
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
affinity_predictor_matrix_output = node
affinity_predictor_output = Lambda(
lambda x: x[:, 0], name="affinity_output")(
affinity_predictor_matrix_output)
"""
layer = Dense(8, activation="sigmoid", kernel_initializer=keras.initializers.RandomNormal(mean=1.0/8.0, stddev=1e-5), use_bias=False)
lifted = TimeDistributed(layer, name="ligandome_hidden1")
node = lifted(affinity_predictor_matrix_output)
"""
auxiliary_input = None
if hyperparameters['auxiliary_input_features']:
auxiliary_input = Input(
shape=(
hyperparameters['max_alleles'],
len(
AuxiliaryInputEncoder.get_columns(
hyperparameters['auxiliary_input_features'],
feature_parameters=hyperparameters[
'auxiliary_input_feature_parameters']))),
dtype="float32",
name="auxiliary")
node = concatenate(
[node, auxiliary_input], name="affinities_with_auxiliary")
#layer = Dense(1, activation="linear", kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=1e-5), use_bias=False)
layer = Dense(1, activation="tanh")
lifted = TimeDistributed(layer, name="ligandome_output")
ligandome_adjustment = lifted(node)
"""
weights = layers[-1].get_weights()
layer = Dense(1, activation="sigmoid", kernel_initializer=keras.initializers.Constant(weights[0]), bias_initializer=keras.initializers.Constant(weights[1]))
lifted = TimeDistributed(layer, name="ligandome_output")
ligandome_output = lifted(prev_node)
"""
def logit(x):
import tensorflow as tf
return - tf.log(1. / x - 1.)
ligandome_output_pre_sigmoid = Add()([Lambda(logit)(affinity_predictor_matrix_output), ligandome_adjustment])
ligandome_output = Activation("sigmoid")(ligandome_output_pre_sigmoid)
#ligandome_output = affinity_predictor_matrix_output
#output_node = concatenate([
# affinity_predictor_output, ligandome_output
#], name="combined_output")
inputs=[
input_peptides,
input_alleles,
] + ([] if auxiliary_input is None else [auxiliary_input]),
outputs=[
affinity_predictor_output,
ligandome_output,
affinity_predictor_matrix_output
],
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
return network
def peptides_to_network_input(self, peptides):
"""
Encode peptides to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
peptides : EncodableSequences or list of string
Returns
-------
numpy.array
"""
encoder = EncodableSequences.create(peptides)
encoded = encoder.variable_length_to_fixed_length_vector_encoding(
**self.hyperparameters['peptide_encoding'])
assert len(encoded) == len(peptides)
return encoded
def allele_encoding_to_network_input(self, allele_encoding):
"""
Encode alleles to the fixed-length encoding expected by the neural
network (which depends on the architecture).
Parameters
----------
allele_encoding : AlleleEncoding
Returns
-------
(numpy.array, numpy.array)
Indices and allele representations.
"""
return (
allele_encoding.indices,
allele_encoding.allele_representations(
self.hyperparameters['allele_amino_acid_encoding']))
def fit(
self,
peptides,
labels,
allele_encoding,
affinities_mask=None, # True when a peptide/label is actually a peptide and an affinity
inequalities=None, # interpreted only for elements where affinities_mask is True, otherwise ignored
shuffle_permutation=None,
verbose=1,
progress_callback=None,
progress_preamble="",
progress_print_interval=5.0):
import keras.backend as K
assert isinstance(allele_encoding, MultipleAlleleEncoding)
assert (
allele_encoding.max_alleles_per_experiment ==
self.hyperparameters['max_alleles'])
#for layer in self.network._layers[:8]:
# print("Setting non trainable", layer)
# layer.trainable = False
# import ipdb ; ipdb.set_trace()
if labels is not None:
labels = numpy.array(labels, copy=False)
if inequalities is not None:
inequalities = numpy.array(inequalities, copy=True)
else:
inequalities = numpy.tile("=", len(labels))
if affinities_mask is not None:
affinities_mask = numpy.array(affinities_mask, copy=False)
else:
affinities_mask = numpy.tile(False, len(labels))
inequalities[~affinities_mask] = "="
random_negatives_planner = RandomNegativePeptides(
**RandomNegativePeptides.hyperparameter_defaults.subselect(
self.hyperparameters))
random_negatives_planner.plan(
peptides=encodable_peptides.sequences,
affinities=numpy.where(affinities_mask, labels, to_ic50(labels)),
alleles=[
numpy.random.choice(row[row != numpy.array(None)])
for row in allele_encoding.alleles
],
inequalities=inequalities)
peptide_input = self.peptides_to_network_input(encodable_peptides)
# Shuffle
if shuffle_permutation is None:
shuffle_permutation = numpy.random.permutation(len(labels))
inequalities = inequalities[shuffle_permutation]
affinities_mask = affinities_mask[shuffle_permutation]
# Optional optimization
(allele_encoding_input, allele_representations) = (
self.allele_encoding_to_network_input(allele_encoding))
x_dict_without_random_negatives = {
'peptide': peptide_input,
if self.hyperparameters['auxiliary_input_features']:
auxiliary_encoder = AuxiliaryInputEncoder(
alleles=allele_encoding.alleles,
peptides=peptides)
x_dict_without_random_negatives[
'auxiliary'
] = auxiliary_encoder.get_array(
features=self.hyperparameters['auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters'])
y1[affinities_mask] = from_ic50(labels[affinities_mask])
random_negative_alleles = random_negatives_planner.get_alleles()
random_negatives_allele_encoding = MultipleAlleleEncoding(
experiment_names=random_negative_alleles,
experiment_to_allele_list=dict(
(a, [a]) for a in random_negative_alleles),
max_alleles_per_experiment=(
allele_encoding.max_alleles_per_experiment),
borrow_from=allele_encoding.allele_encoding)
num_random_negatives = random_negatives_planner.get_total_count()
# Reverse inequalities because from_ic50() flips the direction
# (i.e. lower affinity results in higher y values).
adjusted_inequalities = pandas.Series(inequalities).map({
"=": "=",
">": "<",
"<": ">",
}).values
# Note: we are using "<" here not ">" because the inequalities are
# now in target-space (0-1) not affinity-space.
adjusted_inequalities_with_random_negative = numpy.concatenate([
numpy.tile("<", num_random_negatives),
adjusted_inequalities
])
random_negative_ic50 = self.hyperparameters[
'random_negative_affinity_min'
]
y1_with_random_negatives = numpy.concatenate([
numpy.tile(
from_ic50(random_negative_ic50), num_random_negatives),
y1,
])
affinities_loss = MSEWithInequalities()
encoded_y1 = affinities_loss.encode_y(
y1_with_random_negatives,
inequalities=adjusted_inequalities_with_random_negative)
delta=self.hyperparameters['loss_multiallelic_mass_spec_delta'],
multiplier=self.hyperparameters[
'loss_multiallelic_mass_spec_multiplier'])
y2_with_random_negatives = numpy.concatenate([
numpy.tile(0.0, num_random_negatives),
y2,
])
encoded_y2 = mms_loss.encode_y(y2_with_random_negatives)
allele_representations_hash = self.set_allele_representations(
allele_representations)
optimizer=self.hyperparameters['optimizer'])
if self.hyperparameters['learning_rate'] is not None:
K.set_value(
self.network.optimizer.lr,
self.hyperparameters['learning_rate'])
fit_info["learning_rate"] = float(
K.get_value(self.network.optimizer.lr))
if verbose:
self.network.summary()
min_val_loss_iteration = None
min_val_loss = None
last_progress_print = 0
start = time.time()
for i in range(self.hyperparameters['max_epochs']):
epoch_start = time.time()
random_negative_peptides = EncodableSequences.create(
random_negatives_planner.get_peptides())
random_negative_peptides_encoding = (
self.peptides_to_network_input(random_negative_peptides))
if not x_dict_with_random_negatives:
if len(random_negative_peptides) > 0:
x_dict_with_random_negatives[
"peptide"
] = numpy.concatenate([
random_negative_peptides_encoding,
x_dict_without_random_negatives['peptide'],
])
x_dict_with_random_negatives[
'allele'
] = numpy.concatenate([
self.allele_encoding_to_network_input(
random_negatives_allele_encoding)[0],
x_dict_without_random_negatives['allele']
])
if 'auxiliary' in x_dict_without_random_negatives:
random_negative_auxiliary_encoder = AuxiliaryInputEncoder(
alleles=random_negatives_allele_encoding.alleles,
#peptides=random_negative_peptides.sequences
)
x_dict_with_random_negatives['auxiliary'] = (
numpy.concatenate([
random_negative_auxiliary_encoder.get_array(
features=self.hyperparameters[
'auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters']),
x_dict_without_random_negatives['auxiliary']
]))
else:
x_dict_with_random_negatives = (
x_dict_without_random_negatives)
else:
# Update x_dict_with_random_negatives in place.
# This is more memory efficient than recreating it as above.
if len(random_negative_peptides) > 0:
x_dict_with_random_negatives[
"peptide"
][:num_random_negatives] = random_negative_peptides_encoding
#def generator(x, ys, batch_size):
# # Each batch should have a mix of:
# # - random negative peptides
# # - affinity measurements (binder + non-binder)
# # - multiallelic mass spec
# TODO: need to use fit_generator to keep each minibatch corresponding
# to a single experiment
self.assert_allele_representations_hash(allele_representations_hash)
#import ipdb ; ipdb.set_trace()
shuffle=True,
batch_size=self.hyperparameters['minibatch_size'],
verbose=verbose,
epochs=i + 1,
initial_epoch=i,
epoch_time = time.time() - epoch_start
for (key, value) in fit_history.history.items():
fit_info[key].extend(value)
# Print progress no more often than once every few seconds.
if progress_print_interval is not None and (
not last_progress_print or (
time.time() - last_progress_print
> progress_print_interval)):
print((progress_preamble + " " +
"Epoch %3d / %3d [%0.2f sec]: loss=%g. "
"Min val loss (%s) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
epoch_time,
fit_info['loss'][-1],
str(min_val_loss),
min_val_loss_iteration)).strip())
last_progress_print = time.time()
if self.hyperparameters['validation_split']:
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
val_loss = fit_info['val_loss'][-1]
if min_val_loss is None or (
val_loss < min_val_loss -
self.hyperparameters['min_delta']):
min_val_loss = val_loss
min_val_loss_iteration = i
if self.hyperparameters['early_stopping']:
threshold = (
min_val_loss_iteration +
self.hyperparameters['patience'])
if i > threshold:
if progress_print_interval is not None:
print((progress_preamble + " " +
"Stopping at epoch %3d / %3d: loss=%g. "
"Min val loss (%g) at epoch %s" % (
i,
self.hyperparameters['max_epochs'],
fit_info['loss'][-1],
(
min_val_loss if min_val_loss is not None
else numpy.nan),
min_val_loss_iteration)).strip())
break
if progress_callback:
progress_callback()
fit_info["time"] = time.time() - start
self.fit_info.append(dict(fit_info))
def predict(
self,
peptides,
if isinstance(peptides, string_types):
raise TypeError("peptides must be a list or array, not a string")
if isinstance(alleles, string_types):
raise TypeError(
"alleles must be an iterable, AlleleEncoding, or "
"MultipleAlleleEncoding")
if allele is None and alleles is None:
raise ValueError("Must specify 'allele' or 'alleles'.")
if allele is not None:
if alleles is not None:
raise ValueError("Specify exactly one of allele or alleles")
normalized_allele = mhcnames.normalize_allele_name(allele)
alleles = [normalized_allele] * len(peptides)
if not isinstance(alleles, MultipleAlleleEncoding):
new_alleles = MultipleAlleleEncoding(
allele_to_sequence=self.allele_to_sequence,
max_alleles_per_experiment=self.hyperparameters['max_alleles'])
new_alleles.append_alleles(alleles)
alleles = new_alleles
peptides = EncodableSequences.create(peptides)
self.set_allele_representations(allele_representations)
x_dict = {
'peptide': self.peptides_to_network_input(peptides),
'allele': allele_encoding_input,
}
if self.hyperparameters['auxiliary_input_features']:
auxiliary_encoder = AuxiliaryInputEncoder(
alleles=alleles.alleles,
peptides=peptides.sequences)
x_dict[
'auxiliary'
] = auxiliary_encoder.get_array(
features=self.hyperparameters['auxiliary_input_features'],
feature_parameters=self.hyperparameters[
'auxiliary_input_feature_parameters'])
predictions = [
numpy.squeeze(output)
for output in self.network.predict(x_dict, batch_size=batch_size)
]
predictions[0] = to_ic50(predictions[0])
predictions[2] = to_ic50(predictions[2])
elif output == "affinities_matrix":
predictions = predictions[2]
pass
else:
raise NotImplementedError("Unknown output", output)
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
def set_allele_representations(self, allele_representations):
"""
"""
from keras.models import clone_model
import keras.backend as K
import tensorflow as tf
reshaped = allele_representations.reshape(
(allele_representations.shape[0], -1))
original_model = self.network
layer = original_model.get_layer("allele_representation")
existing_weights_shape = (layer.input_dim, layer.output_dim)
# Only changes to the number of supported alleles (not the length of
# the allele sequences) are allowed.
assert existing_weights_shape[1:] == reshaped.shape[1:]
if existing_weights_shape[0] > reshaped.shape[0]:
# Extend with NaNs so we can avoid having to reshape the weights
# matrix, which is expensive.
reshaped = numpy.append(
reshaped,
numpy.ones([
existing_weights_shape[0] - reshaped.shape[0],
reshaped.shape[1]
]) * numpy.nan,
axis=0)
if existing_weights_shape != reshaped.shape:
print("Performing network surgery", existing_weights_shape, reshaped.shape)
# Network surgery required. Make a new network with this layer's
# dimensions changed. Kind of a hack.
layer.input_dim = reshaped.shape[0]
new_model = clone_model(original_model)
# copy weights for other layers over
for layer in new_model.layers:
if layer.name != "allele_representation":
layer.set_weights(
original_model.get_layer(name=layer.name).get_weights())
self.network = new_model
layer = new_model.get_layer("allele_representation")
# Disable the old model to catch bugs.
def throw(*args, **kwargs):
raise RuntimeError("Using a disabled model!")
original_model.predict = \
original_model.fit = \
original_model.fit_generator = throw
layer.set_weights([reshaped])
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
self.allele_representation_hash = hashlib.sha1(
allele_representations.tobytes()).hexdigest()
return self.allele_representation_hash
def assert_allele_representations_hash(self, value):
numpy.testing.assert_equal(self.allele_representation_hash, value)
def __getstate__(self):
"""
serialize to a dict. Model weights are included. For pickle support.
Returns
-------
dict
"""
result = dict(self.__dict__)
result['network'] = None
result['network_json'] = None
result['network_weights'] = None
if self.network is not None:
result['network_json'] = self.network.to_json()
result['network_weights'] = self.network.get_weights()
return result
def __setstate__(self, state):
"""
Deserialize. For pickle support.
"""
network_json = state.pop("network_json")
network_weights = state.pop("network_weights")
self.__dict__.update(state)
if network_json is not None:
import keras.models
self.network = keras.models.model_from_json(network_json)
if network_weights is not None:
self.network.set_weights(network_weights)