Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
fd2318cd
Commit
fd2318cd
authored
9 years ago
by
Alex Rubinsteyn
Browse files
Options
Downloads
Patches
Plain Diff
update coveralls badge
parent
9fa2c0a7
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
experiments/matrix-completion-accuracy.py
+112
-45
112 additions, 45 deletions
experiments/matrix-completion-accuracy.py
mhcflurry/data.py
+3
-1
3 additions, 1 deletion
mhcflurry/data.py
with
115 additions
and
46 deletions
experiments/matrix-completion-accuracy.py
+
112
−
45
View file @
fd2318cd
...
...
@@ -131,36 +131,56 @@ def evaluate_predictions(
return
mae
,
tau
,
auc
,
f1_score
if
__name__
==
"
__main__
"
:
args
=
parser
.
parse_args
()
print
(
args
)
imputation_methods
=
{
"
softImpute
"
:
SoftImpute
(
verbose
=
args
.
verbose
),
"
svdImpute-5
"
:
IterativeSVD
(
5
,
verbose
=
args
.
verbose
),
"
svdImpute-10
"
:
IterativeSVD
(
10
,
verbose
=
args
.
verbose
),
"
svdImpute-20
"
:
IterativeSVD
(
20
,
verbose
=
args
.
verbose
),
"
similarityWeightedAveraging
"
:
SimilarityWeightedAveraging
(
orientation
=
"
columns
"
,
verbose
=
args
.
verbose
),
def
create_imputation_methods
(
verbose
=
False
,
clip_imputed_values
=
False
,
knn_print_interval
=
20
,
knn_params
=
[
1
,
3
,
5
],
softimpute_params
=
[
1
,
5
,
10
],
svd_params
=
[
5
,
10
,
20
]):
min_value
=
0
if
clip_imputed_values
else
None
max_value
=
1
if
clip_imputed_values
else
None
result_dict
=
{
"
meanFill
"
:
SimpleFill
(
"
mean
"
),
"
zeroFill
"
:
SimpleFill
(
"
zero
"
),
"
MICE
"
:
MICE
(
"
mice
"
:
MICE
(
n_burn_in
=
5
,
n_imputations
=
25
,
min_value
=
None
if
args
.
normalize_rows
or
args
.
normalize_columns
else
0
,
max_value
=
None
if
args
.
normalize_rows
or
args
.
normalize_columns
else
1
,
verbose
=
args
.
verbose
),
"
knnImpute-3
"
:
KNN
(
3
,
orientation
=
"
columns
"
,
verbose
=
args
.
verbose
,
print_interval
=
20
),
"
knnImpute-7
"
:
KNN
(
7
,
orientation
=
"
columns
"
,
verbose
=
args
.
verbose
,
print_interval
=
20
),
"
knnImpute-15
"
:
KNN
(
15
,
orientation
=
"
columns
"
,
verbose
=
args
.
verbose
,
print_interval
=
20
),
min_value
=
min_value
,
max_value
=
max_value
,
verbose
=
verbose
),
"
similarityWeightedAveraging
"
:
SimilarityWeightedAveraging
(
orientation
=
"
columns
"
,
verbose
=
verbose
),
}
for
threshold
in
softimpute_params
:
result_dict
[
"
softImpute-%d
"
%
threshold
]
=
SoftImpute
(
threshold
,
verbose
=
verbose
,
min_value
=
min_value
,
max_value
=
max_value
)
for
rank
in
svd_params
:
result_dict
[
"
svdImpute-%d
"
%
rank
]
=
IterativeSVD
(
rank
,
verbose
=
verbose
,
min_value
=
min_value
,
max_value
=
max_value
)
for
k
in
knn_params
:
result_dict
[
"
knnImpute-%d
"
%
k
]
=
KNN
(
k
,
orientation
=
"
columns
"
,
verbose
=
verbose
,
print_interval
=
knn_print_interval
)
return
result_dict
def
load_data
(
binding_data_csv
,
max_ic50
,
only_human
=
False
,
min_allele_size
=
1
):
allele_to_peptide_to_affinity
=
load_allele_dicts
(
args
.
binding_data_csv
,
max_ic50
=
args
.
max_ic50
,
only_human
=
args
.
only_human
,
regression_output
=
True
)
binding_data_csv
,
max_ic50
=
max_ic50
,
only_human
=
only_human
,
regression_output
=
True
,
min_allele_size
=
min_allele_size
)
peptide_to_allele_to_affinity
=
transpose_nested_dictionary
(
allele_to_peptide_to_affinity
)
n_binding_values
=
sum
(
...
...
@@ -172,25 +192,40 @@ if __name__ == "__main__":
n_binding_values
,
len
(
allele_to_peptide_to_affinity
)))
X
,
peptide_
order
,
allele_
order
=
\
X
,
peptide_
list
,
allele_
list
=
\
dense_matrix_from_nested_dictionary
(
peptide_to_allele_to_affinity
)
if
args
.
save_incomplete_affinity_matrix
:
print
(
"
Saving incomplete data to %s
"
%
args
.
save_incomplete_affinity_matrix
)
column_names
=
[
None
]
*
len
(
allele_order
)
for
(
name
,
position
)
in
allele_order
.
items
():
column_names
[
position
]
=
name
row_names
=
[
None
]
*
len
(
peptide_order
)
for
(
name
,
position
)
in
peptide_order
.
items
():
row_names
[
position
]
=
name
df
=
pd
.
DataFrame
(
X
,
columns
=
column_names
,
index
=
row_names
)
df
.
to_csv
(
args
.
save_incomplete_affinity_matrix
,
index_label
=
"
peptide
"
)
scores
=
ScoreSet
()
missing_mask
=
np
.
isnan
(
X
)
observed_mask
=
~
missing_mask
n_observed_per_peptide
=
observed_mask
.
sum
(
axis
=
1
)
min_observed_per_peptide
=
n_observed_per_peptide
.
min
()
min_peptide_indices
=
np
.
where
(
n_observed_per_peptide
==
min_observed_per_peptide
)[
0
]
print
(
"
%d peptides with %d observations
"
%
(
len
(
min_peptide_indices
),
min_observed_per_peptide
))
n_observed_per_allele
=
observed_mask
.
sum
(
axis
=
0
)
min_observed_per_allele
=
n_observed_per_allele
.
min
()
min_allele_indices
=
np
.
where
(
n_observed_per_allele
==
min_observed_per_allele
)[
0
]
print
(
"
%d alleles with %d observations: %s
"
%
(
len
(
min_allele_indices
),
min_observed_per_allele
,
[
allele_list
[
i
]
for
i
in
min_allele_indices
]))
return
X
,
missing_mask
,
observed_mask
,
peptide_list
,
allele_list
def
index_counts
(
indices
):
max_index
=
indices
.
max
()
counts
=
np
.
zeros
(
max_index
+
1
,
dtype
=
int
)
for
index
in
indices
:
counts
[
index
]
+=
1
return
counts
def
stratified_cross_validation
(
X
,
observed_mask
,
n_folds
=
10
):
n_observed
=
observed_mask
.
sum
()
(
observed_peptide_index
,
observed_allele_index
)
=
np
.
where
(
observed_mask
)
...
...
@@ -200,18 +235,26 @@ if __name__ == "__main__":
assert
len
(
observed_indices
)
==
n_observed
observed_allele_counts
=
observed_mask
.
sum
(
axis
=
0
)
print
(
"
# observed per allele: %s
"
%
(
observed_allele_counts
,))
assert
(
index_counts
(
observed_allele_index
)
==
observed_allele_counts
).
all
()
kfold
=
StratifiedKFold
(
observed_allele_index
,
n_folds
=
args
.
n_folds
,
n_folds
=
n_folds
,
shuffle
=
True
)
for
fold_idx
,
(
_
,
indirect_test_indices
)
in
enumerate
(
kfold
):
for
(
_
,
indirect_test_indices
)
in
kfold
:
test_linear_indices
=
observed_indices
[
indirect_test_indices
]
test_coords
=
np
.
unravel_index
(
test_linear_indices
,
dims
=
observed_mask
.
shape
)
y_true
=
X
[
test_coords
]
test_allele_counts
=
index_counts
(
test_coords
[
1
])
allele_fractions
=
test_allele_counts
/
observed_allele_counts
.
astype
(
float
)
print
(
"
Fraction of each allele in this CV fold: %s
"
%
(
allele_fractions
,))
X_test_vector
=
X
[
test_coords
]
X_fold
=
X
.
copy
()
X_fold
[
test_coords
]
=
np
.
nan
...
...
@@ -229,7 +272,34 @@ if __name__ == "__main__":
print
(
"
Dropping %d empty rows, %d empty columns
"
%
(
empty_row_mask
.
sum
(),
empty_col_mask
.
sum
()))
yield
(
X_fold
,
ok_mesh
,
test_coords
,
X_test_vector
)
if
__name__
==
"
__main__
"
:
args
=
parser
.
parse_args
()
print
(
args
)
imputation_methods
=
create_imputation_methods
(
verbose
=
args
.
verbose
,
clip_imputed_values
=
not
(
args
.
normalize_rows
or
args
.
normalize_rows
),
)
print
(
"
Imputation methods: %s
"
%
imputation_methods
)
X
,
missing_mask
,
observed_mask
,
peptide_list
,
allele_list
=
load_data
(
binding_data_csv
=
args
.
binding_data_csv
,
max_ic50
=
args
.
max_ic50
,
only_human
=
args
.
only_human
,
min_allele_size
=
args
.
n_folds
)
if
args
.
save_incomplete_affinity_matrix
:
print
(
"
Saving incomplete data to %s
"
%
args
.
save_incomplete_affinity_matrix
)
df
=
pd
.
DataFrame
(
X
,
columns
=
allele_list
,
index
=
peptide_list
)
df
.
to_csv
(
args
.
save_incomplete_affinity_matrix
,
index_label
=
"
peptide
"
)
scores
=
ScoreSet
()
kfold
=
stratified_cross_validation
(
X
=
X
,
observed_mask
=
observed_mask
,
n_folds
=
args
.
n_folds
)
for
fold_idx
,
(
X_fold
,
ok_mesh
,
test_coords
,
X_test_vector
)
in
enumerate
(
kfold
):
X_fold_reduced
=
X_fold
[
ok_mesh
]
biscaler
=
BiScaler
(
scale_rows
=
args
.
normalize_rows
,
...
...
@@ -248,15 +318,12 @@ if __name__ == "__main__":
X_completed
=
np
.
zeros_like
(
X
)
X_completed
[
ok_mesh
]
=
X_completed_reduced
y_pred
=
X_completed
[
test_coords
]
mae
,
tau
,
auc
,
f1_score
=
evaluate_predictions
(
y_true
=
y_true
,
y_pred
=
y_pred
,
max_ic50
=
args
.
max_ic50
)
y_true
=
X_test_vector
,
y_pred
=
y_pred
,
max_ic50
=
args
.
max_ic50
)
scores
.
add_many
(
method_name
,
mae
=
mae
,
tau
=
tau
,
f1_score
=
f1_score
,
auc
=
auc
)
scores
.
to_csv
(
args
.
output_file
)
This diff is collapsed.
Click to expand it.
mhcflurry/data.py
+
3
−
1
View file @
fd2318cd
...
...
@@ -156,7 +156,8 @@ def load_allele_dicts(
peptide_column_name
=
None
,
peptide_length_column_name
=
"
peptide_length
"
,
ic50_column_name
=
"
meas
"
,
only_human
=
True
):
only_human
=
True
,
min_allele_size
=
1
):
"""
Parsing CSV of binding data into dictionary of dictionaries.
The outer key is an allele name, the inner key is a peptide sequence,
...
...
@@ -187,6 +188,7 @@ def load_allele_dicts(
}
for
(
allele_name
,
group
)
in
binding_df
.
groupby
(
allele_column_name
)
if
len
(
group
)
>=
min_allele_size
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment