Skip to content
Snippets Groups Projects
Commit fcaaf32f authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix

parent fee8bf49
No related branches found
No related tags found
No related merge requests found
......@@ -16,7 +16,7 @@ base_hyperparameters = {
'early_stopping': True,
'init': 'glorot_uniform',
'layer_sizes': [1024, 512],
'learning_rate': None,
'learning_rate': 0.001,
'locally_connected_layers': [],
'loss': 'custom:mse_with_inequalities',
'max_epochs': 5000,
......@@ -59,11 +59,13 @@ for layer_sizes in [[512, 256], [512, 512], [1024, 512], [1024, 1024]]:
for pretrain in [True]:
l1_base = 0.0000001
for l1 in [l1_base, l1_base / 10, l1_base / 100, l1_base / 1000, 0.0]:
new = deepcopy(base_hyperparameters)
new["layer_sizes"] = layer_sizes
new["dense_layer_l1_regularization"] = l1
new["train_data"]["pretrain"] = pretrain
if not grid or new not in grid:
grid.append(new)
for lr in [0.001, 0.01]:
new = deepcopy(base_hyperparameters)
new["layer_sizes"] = layer_sizes
new["dense_layer_l1_regularization"] = l1
new["train_data"]["pretrain"] = pretrain
new["learning_rate"] = lr
if not grid or new not in grid:
grid.append(new)
dump(grid, stdout)
......@@ -602,9 +602,8 @@ class Class1NeuralNetwork(object):
epochs, max(min_val_loss_iteration + patience, min_epochs))
progress_message = (
"epoch %3d / %3d [%0.2f sec.]: loss=%g val_loss=%g. Min val "
"loss (%g) at epoch %s. Cumulative training points: %d. "
"Earliest stop epoch: %d." % (
"epoch %3d/%3d [%0.2f sec.]: loss=%g val_loss=%g. Min val "
"loss %g at epoch %s. Cum. points: %d. Stop at epoch %d." % (
epoch,
epochs,
epoch_time,
......
......@@ -139,16 +139,18 @@ def cluster_results(
def result_generator():
start = time.time()
while result_items:
print("[%0.1f sec elapsed] waiting on %d / %d items." % (
time.time() - start, len(result_items), len(work_items)))
while True:
result_item = None
for d in result_items:
if os.path.exists(item['finished_path']):
if os.path.exists(d['finished_path']):
result_item = d
break
if result_item is None:
os.sleep(60)
else:
del result_items[result_item]
result_items.remove(result_item)
break
complete_dir = result_item['finished_path']
......
......@@ -163,4 +163,5 @@ def test_run_cluster_parallelism():
if __name__ == "__main__":
run_and_check(n_jobs=0, delete=False)
#run_and_check(n_jobs=0, delete=False)
test_run_cluster_parallelism()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment