Skip to content
Snippets Groups Projects
Commit f052583d authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

Update models_class1_allele_specific_single_kim2014_only to use...

Update models_class1_allele_specific_single_kim2014_only to use hyperparameters roughly the same as preprint
parent a3d88172
No related branches found
No related tags found
No related merge requests found
...@@ -40,7 +40,7 @@ time mhcflurry-class1-allele-specific-cv-and-train \ ...@@ -40,7 +40,7 @@ time mhcflurry-class1-allele-specific-cv-and-train \
--imputer-description imputer.json \ --imputer-description imputer.json \
--train-data "$(mhcflurry-downloads path data_kim2014)/bdata.2009.mhci.public.1.txt" \ --train-data "$(mhcflurry-downloads path data_kim2014)/bdata.2009.mhci.public.1.txt" \
--test-data "$(mhcflurry-downloads path data_kim2014)/bdata.2013.mhci.public.blind.1.txt" \ --test-data "$(mhcflurry-downloads path data_kim2014)/bdata.2013.mhci.public.blind.1.txt" \
--min-samples-per-allele 70 \ --min-samples-per-allele 50 \
--out-cv-results cv.csv \ --out-cv-results cv.csv \
--out-production-results production.csv \ --out-production-results production.csv \
--out-models models \ --out-models models \
......
...@@ -3,6 +3,6 @@ ...@@ -3,6 +3,6 @@
"n_burn_in": 5, "n_burn_in": 5,
"n_imputations": 50, "n_imputations": 50,
"n_nearest_columns": 25, "n_nearest_columns": 25,
"min_observations_per_peptide": 5, "min_observations_per_peptide": 2,
"min_observations_per_allele": 100 "min_observations_per_allele": 2
} }
...@@ -3,13 +3,13 @@ from mhcflurry.class1_allele_specific.train import HYPERPARAMETER_DEFAULTS ...@@ -3,13 +3,13 @@ from mhcflurry.class1_allele_specific.train import HYPERPARAMETER_DEFAULTS
import json import json
models = HYPERPARAMETER_DEFAULTS.models_grid( models = HYPERPARAMETER_DEFAULTS.models_grid(
#impute=[False, True], impute=[False, True],
impute=[False],
activation=["tanh"], activation=["tanh"],
layer_sizes=[[12], [64], [128]], layer_sizes=[[12], [64], [128]],
embedding_output_dim=[8, 32, 64], embedding_output_dim=[8, 32, 64],
dropout_probability=[0, .1, .25], dropout_probability=[0, .1, .25],
# fraction_negative=[0, .1, .2], pretrain_decay=["1 / (1+epoch)**2"],
fraction_negative=[0, .1, .2],
n_training_epochs=[250]) n_training_epochs=[250])
sys.stderr.write("Models: %d\n" % len(models)) sys.stderr.write("Models: %d\n" % len(models))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment