Skip to content
Snippets Groups Projects
Commit ec543a8a authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

update models_class1_experiments1 to include embedding and onehot input variations

parent 13c509e2
No related branches found
No related tags found
No related merge requests found
...@@ -26,6 +26,7 @@ ...@@ -26,6 +26,7 @@
# One of "one-hot", "embedding", or "BLOSUM62". # One of "one-hot", "embedding", or "BLOSUM62".
"peptide_amino_acid_encoding": "BLOSUM62", "peptide_amino_acid_encoding": "BLOSUM62",
"use_embedding": false, # maintained for backward compatability "use_embedding": false, # maintained for backward compatability
"embedding_output_dim": 8, # only used if using embedding
"kmer_size": 15, "kmer_size": 15,
########################################## ##########################################
......
...@@ -37,9 +37,9 @@ time mhcflurry-class1-train-allele-specific-models \ ...@@ -37,9 +37,9 @@ time mhcflurry-class1-train-allele-specific-models \
--alleles $ALLELES & --alleles $ALLELES &
# Model variations on qualitative + quantitative # Model variations on qualitative + quantitative
for mod in 0local_noL1 0local 1local dense16 dense64 noL1 for mod in 0local_noL1 0local 2local dense16 dense64 noL1 onehot embedding
do do
cp $SCRIPT_DIR/hyperparameters-${mod}.json . cp $SCRIPT_DIR/hyperparameters-${mod}.yaml .
mkdir models-${mod} mkdir models-${mod}
time mhcflurry-class1-train-allele-specific-models \ time mhcflurry-class1-train-allele-specific-models \
--data "$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \ --data "$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \
......
[{
##########################################
# ENSEMBLE SIZE
##########################################
"n_models": 8,
##########################################
# OPTIMIZATION
##########################################
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
##########################################
# RANDOM NEGATIVE PEPTIDES
##########################################
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
##########################################
# PEPTIDE REPRESENTATION
##########################################
# One of "one-hot", "embedding", or "BLOSUM62".
"peptide_amino_acid_encoding": "embedding",
"use_embedding": true, # maintained for backward compatability
"embedding_output_dim": 8, # only used if using embedding
"kmer_size": 15,
##########################################
# NEURAL NETWORK ARCHITECTURE
##########################################
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"dense_layer_l1_regularization": 0.001,
"batch_normalization": false,
"dropout_probability": 0.0,
}]
[{
##########################################
# ENSEMBLE SIZE
##########################################
"n_models": 8,
##########################################
# OPTIMIZATION
##########################################
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
##########################################
# RANDOM NEGATIVE PEPTIDES
##########################################
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
##########################################
# PEPTIDE REPRESENTATION
##########################################
# One of "one-hot", "embedding", or "BLOSUM62".
"peptide_amino_acid_encoding": "one-hot",
"use_embedding": false, # maintained for backward compatability
"kmer_size": 15,
##########################################
# NEURAL NETWORK ARCHITECTURE
##########################################
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"dense_layer_l1_regularization": 0.001,
"batch_normalization": false,
"dropout_probability": 0.0,
}]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment