Skip to content
Snippets Groups Projects
Commit e32fb824 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

change hyperparameters.json to hyperparameters.yaml

parent c1ea03b4
No related branches found
No related tags found
No related merge requests found
......@@ -129,7 +129,7 @@ notebook for an overview of the Python API, including fitting your own predictor
An ensemble of eight single-allele models was trained for each allele with at least
100 measurements in the training set (118 alleles). The models were trained on a
random 80% sample of the data for the allele and the remaining 20% was used for
early stopping. All models use the same [architecture](downloads-generation/models_class1/hyperparameters.json). The
early stopping. All models use the same [architecture](downloads-generation/models_class1/hyperparameters.yaml). The
predictions are taken to be the geometric mean of the nM binding affinity
predictions of the individual models. The training script is [here](downloads-generation/models_class1/GENERATE.sh).
......
......@@ -25,11 +25,11 @@ cd $SCRATCH_DIR/$DOWNLOAD_NAME
mkdir models
cp $SCRIPT_DIR/hyperparameters.json .
cp $SCRIPT_DIR/hyperparameters.yaml .
time mhcflurry-class1-train-allele-specific-models \
--data "$(mhcflurry-downloads path data_curated)/curated_training_data.csv.bz2" \
--hyperparameters hyperparameters.json \
--hyperparameters hyperparameters.yaml \
--out-models-dir models \
--min-measurements-per-allele 200
......
[
{
"n_models": 12,
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"use_embedding": false,
"kmer_size": 15,
"batch_normalization": false,
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
"dense_layer_l1_regularization": 0.001,
"dropout_probability": 0.0
}
]
[{
##########################################
# ENSEMBLE SIZE
##########################################
"n_models": 12,
##########################################
# OPTIMIZATION
##########################################
"max_epochs": 500,
"patience": 10,
"early_stopping": true,
"validation_split": 0.2,
##########################################
# RANDOM NEGATIVE PEPTIDES
##########################################
"random_negative_rate": 0.0,
"random_negative_constant": 25,
"random_negative_affinity_min": 20000.0,
"random_negative_affinity_max": 50000.0,
##########################################
# PEPTIDE REPRESENTATION
##########################################
# One of "one-hot", "embedding", or "BLOSUM62".
"peptide_amino_acid_encoding": "BLOSUM62",
"use_embedding": false, # maintained for backward compatability
"kmer_size": 15,
##########################################
# NEURAL NETWORK ARCHITECTURE
##########################################
"locally_connected_layers": [
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
},
{
"filters": 8,
"activation": "tanh",
"kernel_size": 3
}
],
"activation": "relu",
"output_activation": "sigmoid",
"layer_sizes": [
32
],
"dense_layer_l1_regularization": 0.001,
"batch_normalization": false,
"dropout_probability": 0.0,
}]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment