Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
de6b5380
Commit
de6b5380
authored
8 years ago
by
Alex Rubinsteyn
Browse files
Options
Downloads
Plain Diff
Merge pull request #24 from hammerlab/expose-pretrain-decay
expose pretrain decay factor function
parents
802ab1c0
f992d4f5
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mhcflurry/class1_binding_predictor.py
+7
-10
7 additions, 10 deletions
mhcflurry/class1_binding_predictor.py
with
7 additions
and
10 deletions
mhcflurry/class1_binding_predictor.py
+
7
−
10
View file @
de6b5380
...
...
@@ -252,6 +252,7 @@ class Class1BindingPredictor(PredictorBase):
Y_pretrain
=
None
,
sample_weights_pretrain
=
None
,
n_random_negative_samples
=
0
,
pretrain_decay
=
lambda
epoch
:
np
.
exp
(
-
epoch
),
n_training_epochs
=
200
,
verbose
=
False
,
batch_size
=
128
):
...
...
@@ -277,6 +278,10 @@ class Class1BindingPredictor(PredictorBase):
Y_pretrain : array
Labels for extra samples, shape
pretrain_decay : int -> float function
decay function for pretraining, mapping epoch number to decay
factor
sample_weights_pretrain : array
Initial weights for the rows of X_pretrain. If not specified then
initialized to ones.
...
...
@@ -309,16 +314,8 @@ class Class1BindingPredictor(PredictorBase):
100
*
total_train_sample_weight
/
total_combined_sample_weight
))
for
epoch
in
range
(
n_training_epochs
):
# weights for synthetic points can be shrunk as:
# ~ 1 / (1+epoch)**2
# or
# 2 ** -epoch
# or
# e ** -epoch
#
# TODO: explore the best scheme for shrinking imputation weight
#
decay_factor
=
2.0
**
-
epoch
decay_factor
=
pretrain_decay
(
epoch
)
# if the contribution of synthetic samples is less than a
# thousandth of the actual data, then stop using it
pretrain_contribution
=
total_pretrain_sample_weight
*
decay_factor
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment