Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
d6999996
Commit
d6999996
authored
5 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
working
parent
9c25aa29
Loading
Loading
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
mhcflurry/batch_generator.py
+6
-7
6 additions, 7 deletions
mhcflurry/batch_generator.py
mhcflurry/class1_ligandome_predictor.py
+2
-1
2 additions, 1 deletion
mhcflurry/class1_ligandome_predictor.py
test/test_batch_generator.py
+114
-0
114 additions, 0 deletions
test/test_batch_generator.py
with
122 additions
and
8 deletions
mhcflurry/batch_generator.py
+
6
−
7
View file @
d6999996
...
...
@@ -116,13 +116,12 @@ class MultiallelicMassSpecBatchGenerator(object):
def
plan_from_dataframe
(
df
,
hyperparameters
):
affinity_fraction
=
hyperparameters
[
"
batch_generator_affinity_fraction
"
]
batch_size
=
hyperparameters
[
"
batch_generator_batch_size
"
]
classes
=
{}
df
[
"
equivalence_class
"
]
=
[
classes
.
setdefault
(
tuple
(
row
[[
"
is_affinity
"
,
"
is_binder
"
,
"
experiment_name
"
]]),
len
(
classes
))
for
_
,
row
in
df
.
iterrows
()
]
equivalence_columns
=
[
"
is_affinity
"
,
"
is_binder
"
,
"
experiment_name
"
]
df
[
"
equivalence_key
"
]
=
df
[
equivalence_columns
].
astype
(
str
).
sum
(
1
)
equivalence_map
=
dict
(
(
v
,
i
)
for
(
i
,
v
)
in
zip
(
*
df
.
equivalence_key
.
factorize
()))
df
[
"
equivalence_class
"
]
=
df
.
equivalence_key
.
map
(
equivalence_map
)
df
[
"
first_allele
"
]
=
df
.
alleles
.
str
.
get
(
0
)
df
[
"
unused
"
]
=
True
df
[
"
idx
"
]
=
df
.
index
...
...
This diff is collapsed.
Click to expand it.
mhcflurry/class1_ligandome_predictor.py
+
2
−
1
View file @
d6999996
...
...
@@ -725,7 +725,8 @@ class Class1LigandomePredictor(object):
axis
=
0
)
if
existing_weights_shape
!=
reshaped
.
shape
:
print
(
"
Performing network surgery
"
,
existing_weights_shape
,
reshaped
.
shape
)
print
(
"
Performing network surgery
"
,
existing_weights_shape
,
reshaped
.
shape
)
# Network surgery required. Make a new network with this layer's
# dimensions changed. Kind of a hack.
layer
.
input_dim
=
reshaped
.
shape
[
0
]
...
...
This diff is collapsed.
Click to expand it.
test/test_batch_generator.py
+
114
−
0
View file @
d6999996
import
logging
logging
.
getLogger
(
'
matplotlib
'
).
disabled
=
True
logging
.
getLogger
(
'
tensorflow
'
).
disabled
=
True
import
os
import
collections
import
time
import
cProfile
import
pstats
import
pandas
import
numpy
from
mhcflurry.allele_encoding
import
MultipleAlleleEncoding
from
mhcflurry.downloads
import
get_path
from
mhcflurry.batch_generator
import
(
MultiallelicMassSpecBatchGenerator
)
from
mhcflurry.regression_target
import
to_ic50
from
mhcflurry
import
Class1AffinityPredictor
from
numpy.testing
import
assert_equal
def
data_path
(
name
):
'''
Return the absolute path to a file in the test/data directory.
The name specified should be relative to test/data.
'''
return
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
"
data
"
,
name
)
def
test_basic
():
planner
=
MultiallelicMassSpecBatchGenerator
(
hyperparameters
=
dict
(
...
...
@@ -64,3 +86,95 @@ def test_basic():
#import ipdb;ipdb.set_trace()
def
test_large
(
sample_rate
=
0.01
):
multi_train_df
=
pandas
.
read_csv
(
data_path
(
"
multiallelic_ms.benchmark1.csv.bz2
"
))
multi_train_df
[
"
label
"
]
=
multi_train_df
.
hit
multi_train_df
[
"
is_affinity
"
]
=
False
sample_table
=
multi_train_df
.
loc
[
multi_train_df
.
label
==
True
].
drop_duplicates
(
"
sample_id
"
).
set_index
(
"
sample_id
"
).
loc
[
multi_train_df
.
sample_id
.
unique
()
]
grouped
=
multi_train_df
.
groupby
(
"
sample_id
"
).
nunique
()
for
col
in
sample_table
.
columns
:
if
(
grouped
[
col
]
>
1
).
any
():
del
sample_table
[
col
]
sample_table
[
"
alleles
"
]
=
sample_table
.
hla
.
str
.
split
()
pan_train_df
=
pandas
.
read_csv
(
get_path
(
"
models_class1_pan
"
,
"
models.with_mass_spec/train_data.csv.bz2
"
))
pan_sub_train_df
=
pan_train_df
pan_sub_train_df
[
"
label
"
]
=
pan_sub_train_df
[
"
measurement_value
"
]
del
pan_sub_train_df
[
"
measurement_value
"
]
pan_sub_train_df
[
"
is_affinity
"
]
=
True
pan_sub_train_df
=
pan_sub_train_df
.
sample
(
frac
=
sample_rate
)
multi_train_df
=
multi_train_df
.
sample
(
frac
=
sample_rate
)
pan_predictor
=
Class1AffinityPredictor
.
load
(
get_path
(
"
models_class1_pan
"
,
"
models.with_mass_spec
"
),
optimization_level
=
0
,
max_models
=
1
)
allele_encoding
=
MultipleAlleleEncoding
(
experiment_names
=
multi_train_df
.
sample_id
.
values
,
experiment_to_allele_list
=
sample_table
.
alleles
.
to_dict
(),
max_alleles_per_experiment
=
sample_table
.
alleles
.
str
.
len
().
max
(),
allele_to_sequence
=
pan_predictor
.
allele_to_sequence
,
)
allele_encoding
.
append_alleles
(
pan_sub_train_df
.
allele
.
values
)
allele_encoding
=
allele_encoding
.
compact
()
combined_train_df
=
pandas
.
concat
(
[
multi_train_df
,
pan_sub_train_df
],
ignore_index
=
True
,
sort
=
True
)
print
(
"
Total size
"
,
combined_train_df
)
planner
=
MultiallelicMassSpecBatchGenerator
(
hyperparameters
=
dict
(
batch_generator_validation_split
=
0.2
,
batch_generator_batch_size
=
1024
,
batch_generator_affinity_fraction
=
0.5
))
s
=
time
.
time
()
profiler
=
cProfile
.
Profile
()
profiler
.
enable
()
planner
.
plan
(
affinities_mask
=
combined_train_df
.
is_affinity
.
values
,
experiment_names
=
combined_train_df
.
sample_id
.
values
,
alleles_matrix
=
allele_encoding
.
alleles
,
is_binder
=
numpy
.
where
(
combined_train_df
.
is_affinity
.
values
,
combined_train_df
.
label
.
values
,
to_ic50
(
combined_train_df
.
label
.
values
))
<
1000.0
)
stats
=
pstats
.
Stats
(
profiler
)
stats
.
sort_stats
(
"
cumtime
"
).
reverse_order
().
print_stats
()
print
(
planner
.
summary
())
print
(
"
Planning took [sec]:
"
,
time
.
time
()
-
s
)
(
train_iter
,
test_iter
)
=
planner
.
get_train_and_test_generators
(
x_dict
=
{
"
idx
"
:
numpy
.
arange
(
len
(
combined_train_df
)),
},
y_list
=
[])
for
(
kind
,
it
)
in
[(
"
train
"
,
train_iter
),
(
"
test
"
,
test_iter
)]:
for
(
i
,
(
x_item
,
y_item
))
in
enumerate
(
it
):
idx
=
x_item
[
"
idx
"
]
combined_train_df
.
loc
[
idx
,
"
kind
"
]
=
kind
combined_train_df
.
loc
[
idx
,
"
idx
"
]
=
idx
combined_train_df
.
loc
[
idx
,
"
batch
"
]
=
i
combined_train_df
[
"
idx
"
]
=
combined_train_df
.
idx
.
astype
(
int
)
combined_train_df
[
"
batch
"
]
=
combined_train_df
.
batch
.
astype
(
int
)
for
((
kind
,
batch_num
),
batch_df
)
in
combined_train_df
.
groupby
([
"
kind
"
,
"
batch
"
]):
if
not
batch_df
.
is_affinity
.
all
():
# Test each batch has at most one multiallelic ms experiment.
assert_equal
(
batch_df
.
loc
[
~
batch_df
.
is_affinity
].
sample_id
.
nunique
(),
1
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment