Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
d4043fb3
Commit
d4043fb3
authored
9 years ago
by
Alex Rubinsteyn
Browse files
Options
Downloads
Patches
Plain Diff
added script to check dataset size sensitivity
parent
ab2dc6eb
Loading
Loading
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
experiments/dataset-size-sensitivity.py
+190
-0
190 additions, 0 deletions
experiments/dataset-size-sensitivity.py
with
190 additions
and
0 deletions
experiments/dataset-size-sensitivity.py
0 → 100644
+
190
−
0
View file @
d4043fb3
#!/usr/bin/env python
#
# Copyright (c) 2015. Mount Sinai School of Medicine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Plot AUC and F1 score of predictors as a function of dataset size
"""
from
argparse
import
ArgumentParser
import
numpy
as
np
import
mhcflurry
import
sklearn
import
sklearn.metrics
from
sklearn.linear_model
import
LinearRegression
import
seaborn
from
dataset_paths
import
PETERS2009_CSV_PATH
parser
=
ArgumentParser
()
parser
.
add_argument
(
"
--training-csv
"
,
default
=
PETERS2009_CSV_PATH
)
parser
.
add_argument
(
"
--allele
"
,
default
=
"
A0201
"
)
parser
.
add_argument
(
"
--max-ic50
"
,
type
=
float
,
default
=
20000.0
)
parser
.
add_argument
(
"
--hidden-layer-size
"
,
type
=
int
,
default
=
10
,
help
=
"
Hidden layer size for neural network, if 0 use linear regression
"
)
parser
.
add_argument
(
"
--activation
"
,
default
=
"
tanh
"
)
parser
.
add_argument
(
"
--training-epochs
"
,
type
=
int
,
default
=
100
)
parser
.
add_argument
(
"
--minibatch-size
"
,
type
=
int
,
default
=
128
)
parser
.
add_argument
(
"
--repeat
"
,
type
=
int
,
default
=
10
,
help
=
"
How many times to train model for same dataset size
"
)
def
binary_encode
(
X
,
n_indices
=
20
):
n_cols
=
X
.
shape
[
1
]
X_encode
=
np
.
zeros
((
len
(
X
),
n_indices
*
n_cols
),
dtype
=
float
)
for
i
in
range
(
len
(
X
)):
for
col_idx
in
range
(
n_cols
):
X_encode
[
i
,
col_idx
*
n_indices
+
X
[
i
,
col_idx
]]
=
True
return
X_encode
def
subsample_performance
(
X
,
Y
,
max_ic50
,
model_fn
=
None
,
fractions
=
np
.
arange
(
0.01
,
1
,
0.03
),
niters
=
10
,
fraction_test
=
0.2
,
nb_epoch
=
50
,
batch_size
=
32
):
n
=
len
(
Y
)
xs
=
[]
aucs
=
[]
f1s
=
[]
for
iternum
in
range
(
niters
):
if
model_fn
is
None
:
model
=
LinearRegression
()
else
:
model
=
model_fn
()
initial_weights
=
model
.
get_weights
()
mask
=
np
.
random
.
rand
(
n
)
>
fraction_test
X_train
=
X
[
mask
]
X_test
=
X
[
~
mask
]
Y_train
=
Y
[
mask
]
Y_test
=
Y
[
~
mask
]
n_train
=
len
(
Y_train
)
train_indices
=
np
.
arange
(
len
(
Y_train
))
np
.
random
.
shuffle
(
train_indices
)
for
i
,
fraction
in
enumerate
(
fractions
):
n_fraction
=
int
(
n_train
*
fraction
)
subset_indices
=
train_indices
[:
n_fraction
]
X_subset
=
X_train
[
subset_indices
]
Y_subset
=
Y_train
[
subset_indices
]
if
model_fn
is
None
:
model
.
fit
(
X_subset
,
Y_subset
)
else
:
model
.
set_weights
(
initial_weights
)
model
.
fit
(
X_subset
,
Y_subset
,
verbose
=
0
,
nb_epoch
=
nb_epoch
,
batch_size
=
batch_size
)
pred
=
model
.
predict
(
X_test
)
true_ic50
=
max_ic50
**
(
1
-
Y_test
)
true_label
=
true_ic50
<=
500
auc
=
sklearn
.
metrics
.
roc_auc_score
(
true_label
,
pred
)
xs
.
append
(
n_fraction
)
aucs
.
append
(
auc
)
pred_ic50
=
max_ic50
**
(
1
-
pred
)
pred_label
=
pred_ic50
<=
500
f1
=
sklearn
.
metrics
.
f1_score
(
true_label
,
pred_label
)
print
(
"
Fraction=%0.2f, n=%d, AUC=%0.4f, F1=%0.4f
"
%
(
fraction
,
n_fraction
,
auc
,
f1
))
f1s
.
append
(
f1
)
return
xs
,
aucs
,
f1s
if
__name__
==
"
__main__
"
:
args
=
parser
.
parse_args
()
print
(
args
)
datasets
,
_
=
mhcflurry
.
data_helpers
.
load_data
(
args
.
training_csv
,
binary_encoding
=
True
,
flatten_binary_encoding
=
True
,
max_ic50
=
args
.
max_ic50
)
dataset
=
datasets
[
args
.
allele
]
X
=
dataset
.
X
Y
=
dataset
.
Y
print
(
"
Total # of samples for %s: %d
"
%
(
args
.
allele
,
len
(
Y
)))
if
args
.
hidden_layer_size
>
0
:
model_fn
=
lambda
:
mhcflurry
.
feedforward
.
make_hotshot_network
(
layer_sizes
=
[
args
.
hidden_layer_size
],
activation
=
args
.
activation
)
else
:
model_fn
=
None
xs
,
aucs
,
f1s
=
subsample_performance
(
X
=
X
,
Y
=
Y
,
model_fn
=
model_fn
,
max_ic50
=
args
.
max_ic50
,
fractions
=
np
.
arange
(
0.01
,
1
,
0.03
),
niters
=
args
.
repeat
,
nb_epoch
=
args
.
training_epochs
,
batch_size
=
args
.
minibatch_size
)
for
(
name
,
values
)
in
[(
"
AUC
"
,
aucs
),
(
"
F1
"
,
f1s
)]:
figure
=
seaborn
.
plt
.
figure
(
figsize
=
(
10
,
8
))
ax
=
figure
.
add_axes
()
seaborn
.
regplot
(
x
=
np
.
array
(
xs
).
astype
(
float
),
y
=
np
.
array
(
values
),
logx
=
True
,
x_jitter
=
1
,
fit_reg
=
False
,
color
=
"
red
"
,
scatter_kws
=
dict
(
alpha
=
0.5
,
s
=
50
))
seaborn
.
plt
.
xlabel
(
"
# samples (subset of %s)
"
%
args
.
allele
)
seaborn
.
plt
.
ylabel
(
name
)
if
args
.
hidden_layer_size
:
filename
=
"
%s-%s-vs-nsamples-hidden-%s-activation-%s.png
"
%
(
args
.
allele
,
name
,
args
.
hidden_layer_size
,
args
.
activation
)
else
:
filename
=
"
%s-%s-vs-nsamples-linear.png
"
%
(
args
.
allele
,
name
)
figure
.
savefig
(
filename
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment