Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mhc_rank
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Skillman-Lawrence
mhc_rank
Commits
d3184f29
Commit
d3184f29
authored
5 years ago
by
Tim O'Donnell
Browse files
Options
Downloads
Patches
Plain Diff
fix
parent
d32c8f91
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
downloads-generation/data_mass_spec_benchmark/run_predictors.py
+103
-50
103 additions, 50 deletions
...ads-generation/data_mass_spec_benchmark/run_predictors.py
with
103 additions
and
50 deletions
downloads-generation/data_mass_spec_benchmark/run_predictors.py
+
103
−
50
View file @
d3184f29
...
...
@@ -244,16 +244,20 @@ def run(argv=sys.argv[1:]):
# We rerun any alleles have nulls for any kind of values
# (e.g. affinity, percentile rank, elution score).
is_null_matrix
=
pandas
.
DataFrame
(
columns
=
alleles
,
dtype
=
"
int8
"
)
for
(
allele
,
sub_df
)
in
manifest_df
.
groupby
(
"
allele
"
):
is_null_matrix
[
allele
]
=
result_df
[
sub_df
.
col
.
values
].
isnull
().
any
(
1
)
print
(
"
Fraction null
"
,
is_null_matrix
.
values
.
mean
())
print
(
"
Computing blocks.
"
)
start
=
time
.
time
()
blocks
=
blocks_of_ones
(
result_df
.
isnull
()
.
values
)
blocks
=
blocks_of_ones
(
is
_
null
_matrix
.
values
)
print
(
"
Found %d blocks in %f sec.
"
%
(
len
(
blocks
),
(
time
.
time
()
-
start
)))
work_items
=
[]
for
(
row_index1
,
col_index1
,
row_index2
,
col_index2
)
in
blocks
:
block_cols
=
result_df
.
columns
[
col_index1
:
col_index2
+
1
]
block_alleles
=
sorted
(
set
([
x
.
split
()[
0
]
for
x
in
block_cols
]))
block_alleles
=
is_null_matrix
.
columns
[
col_index1
:
col_index2
+
1
]
block_peptides
=
result_df
.
index
[
row_index1
:
row_index2
+
1
]
print
(
"
Block:
"
,
row_index1
,
col_index1
,
row_index2
,
col_index2
)
...
...
@@ -285,6 +289,26 @@ def run(argv=sys.argv[1:]):
for
(
i
,
work_item
)
in
enumerate
(
work_items
):
work_item
[
"
work_item_num
"
]
=
i
# Combine work items to form tasks.
tasks
=
[]
peptides_in_last_task
=
None
# We sort work_items to put small items first so they get combined.
for
work_item
in
sorted
(
work_items
,
key
=
lambda
d
:
len
(
d
[
'
peptides
'
])):
if
peptides_in_last_task
is
not
None
and
(
len
(
work_item
[
'
peptides
'
])
+
peptides_in_last_task
<
args
.
chunk_size
):
# Add to last task.
tasks
[
-
1
][
'
work_item_dicts
'
].
append
(
work_item
)
peptides_in_last_task
+=
len
(
work_item
[
'
peptides
'
])
else
:
# New task
tasks
.
append
({
'
work_item_dicts
'
:
[
work_item
]})
peptides_in_last_task
=
len
(
work_item
[
'
peptides
'
])
print
(
"
Collected %d work items into %d tasks
"
%
(
len
(
work_items
),
len
(
tasks
)))
if
args
.
predictor
==
"
mhcflurry
"
:
do_predictions_function
=
do_predictions_mhcflurry
else
:
...
...
@@ -296,14 +320,14 @@ def run(argv=sys.argv[1:]):
# Serial run
print
(
"
Running in serial.
"
)
results
=
(
do_predictions_function
(
**
item
)
for
item
in
work_item
s
)
do_predictions_function
(
**
task
)
for
task
in
task
s
)
elif
args
.
cluster_parallelism
:
# Run using separate processes HPC cluster.
print
(
"
Running on cluster.
"
)
results
=
cluster_results_from_args
(
args
,
work_function
=
do_predictions_function
,
work_items
=
work_item
s
,
work_items
=
task
s
,
constant_data
=
GLOBAL_DATA
,
input_serialization_method
=
"
dill
"
,
result_serialization_method
=
"
pickle
"
,
...
...
@@ -314,7 +338,7 @@ def run(argv=sys.argv[1:]):
assert
worker_pool
is
not
None
results
=
worker_pool
.
imap_unordered
(
partial
(
call_wrapped_kwargs
,
do_predictions_function
),
work_item
s
,
task
s
,
chunksize
=
1
)
allele_to_chunk_index_to_predictions
=
{}
...
...
@@ -332,16 +356,16 @@ def run(argv=sys.argv[1:]):
result_df
[
col
].
isnull
().
mean
()
*
100.0
),
out_path
)
for
(
work
_item_num
,
col_to_predictions
)
in
tqdm
.
tqdm
(
results
,
total
=
len
(
work_items
))
:
for
(
col
,
predictions
)
in
col_to_predictions
.
items
():
result_df
.
loc
[
work_items
[
work_item_num
][
'
peptides
'
],
col
]
=
predictions
if
time
.
time
()
-
last_write_time_per_column
[
col
]
>
180
:
write_col
(
col
)
last_write_time_per_column
[
col
]
=
time
.
time
()
for
work
er_results
in
tqdm
.
tqdm
(
results
,
total
=
len
(
work_items
)):
for
(
work_item_num
,
col_to_predictions
)
in
worker_results
:
for
(
col
,
predictions
)
in
col_to_predictions
.
items
():
result_df
.
loc
[
work_items
[
work_item_num
][
'
peptides
'
],
col
]
=
predictions
if
time
.
time
()
-
last_write_time_per_column
[
col
]
>
180
:
write_col
(
col
)
last_write_time_per_column
[
col
]
=
time
.
time
()
print
(
"
Done processing. Final write for each column.
"
)
for
col
in
result_df
.
columns
:
...
...
@@ -359,8 +383,14 @@ def run(argv=sys.argv[1:]):
prediction_time
/
60.0
))
def
do_predictions_mhctools
(
work_item_num
,
peptides
,
alleles
,
constant_data
=
None
):
def
do_predictions_mhctools
(
work_item_dicts
,
constant_data
=
None
):
"""
Each tuple of work items consists of:
(work_item_num, peptides, alleles)
"""
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import
time
...
...
@@ -371,28 +401,43 @@ def do_predictions_mhctools(
if
constant_data
is
None
:
constant_data
=
GLOBAL_DATA
cols
=
constant_data
[
'
cols
'
]
predictor_name
=
constant_data
[
'
args
'
].
predictor
if
predictor_name
==
"
netmhcpan4
"
:
predictor
=
mhctools
.
NetMHCpan4
(
alleles
=
alleles
,
program_name
=
"
netMHCpan-4.0
"
)
else
:
raise
ValueError
(
"
Unsupported
"
,
predictor_name
)
cols
=
constant_data
[
'
cols
'
]
results
=
[]
for
(
i
,
d
)
in
enumerate
(
work_item_dicts
):
work_item_num
=
d
[
'
work_item_num
'
]
peptides
=
d
[
'
peptides
'
]
alleles
=
d
[
'
alleles
'
]
start
=
time
.
time
()
df
=
predictor
.
predict_peptides_dataframe
(
peptides
)
print
(
"
Generated predictions for %d peptides x %d alleles in %0.2f sec.
"
%
(
len
(
peptides
),
len
(
alleles
),
(
time
.
time
()
-
start
)))
print
(
"
Processing work item
"
,
i
+
1
,
"
of
"
,
len
(
work_item_dicts
))
result
=
{}
results
.
append
((
work_item_num
,
result
))
if
predictor_name
==
"
netmhcpan4
"
:
predictor
=
mhctools
.
NetMHCpan4
(
alleles
=
alleles
,
program_name
=
"
netMHCpan-4.0
"
)
else
:
raise
ValueError
(
"
Unsupported
"
,
predictor_name
)
start
=
time
.
time
()
df
=
predictor
.
predict_peptides_dataframe
(
peptides
)
print
(
"
Predicted for %d peptides x %d alleles in %0.2f sec.
"
%
(
len
(
peptides
),
len
(
alleles
),
(
time
.
time
()
-
start
)))
for
(
allele
,
sub_df
)
in
df
.
groupby
(
"
allele
"
):
for
col
in
cols
:
result
[
"
%s %s
"
%
(
allele
,
col
)]
=
(
sub_df
[
col
].
values
.
astype
(
'
float32
'
))
return
results
results
=
{}
for
(
allele
,
sub_df
)
in
df
.
groupby
(
"
allele
"
):
for
col
in
cols
:
results
[
"
%s %s
"
%
(
allele
,
col
)]
=
sub_df
[
col
].
values
.
astype
(
'
float32
'
)
return
(
work_item_num
,
results
)
def
do_predictions_mhcflurry
(
work_item_dicts
,
constant_data
=
None
):
"""
Each dict of work items should have keys: work_item_num, peptides, alleles
"""
def
do_predictions_mhcflurry
(
work_item_num
,
peptides
,
alleles
,
constant_data
=
None
):
# This may run on the cluster in a way that misses all top level imports,
# so we have to re-import everything here.
import
time
...
...
@@ -409,22 +454,30 @@ def do_predictions_mhcflurry(work_item_num, peptides, alleles, constant_data=Non
predictor
=
Class1AffinityPredictor
.
load
(
args
.
mhcflurry_models_dir
)
start
=
time
.
time
()
results
=
{}
peptides
=
EncodableSequences
.
create
(
peptides
)
for
(
i
,
allele
)
in
enumerate
(
alleles
):
print
(
"
Processing allele %d / %d: %0.2f sec elapsed
"
%
(
i
+
1
,
len
(
alleles
),
time
.
time
()
-
start
))
for
col
in
[
"
affinity
"
]:
results
[
"
%s %s
"
%
(
allele
,
col
)]
=
predictor
.
predict
(
peptides
=
peptides
,
allele
=
allele
,
throw
=
False
,
model_kwargs
=
{
'
batch_size
'
:
args
.
mhcflurry_batch_size
,
}).
astype
(
'
float32
'
)
print
(
"
Done predicting in
"
,
time
.
time
()
-
start
,
"
sec
"
)
return
(
work_item_num
,
results
)
results
=
[]
for
(
i
,
d
)
in
enumerate
(
work_item_dicts
):
work_item_num
=
d
[
'
work_item_num
'
]
peptides
=
d
[
'
peptides
'
]
alleles
=
d
[
'
alleles
'
]
print
(
"
Processing work item
"
,
i
+
1
,
"
of
"
,
len
(
work_item_dicts
))
result
=
{}
results
.
append
((
work_item_num
,
result
))
start
=
time
.
time
()
peptides
=
EncodableSequences
.
create
(
peptides
)
for
(
i
,
allele
)
in
enumerate
(
alleles
):
print
(
"
Processing allele %d / %d: %0.2f sec elapsed
"
%
(
i
+
1
,
len
(
alleles
),
time
.
time
()
-
start
))
for
col
in
[
"
affinity
"
]:
result
[
"
%s %s
"
%
(
allele
,
col
)]
=
predictor
.
predict
(
peptides
=
peptides
,
allele
=
allele
,
throw
=
False
,
model_kwargs
=
{
'
batch_size
'
:
args
.
mhcflurry_batch_size
,
}).
astype
(
'
float32
'
)
print
(
"
Done predicting in
"
,
time
.
time
()
-
start
,
"
sec
"
)
return
results
if
__name__
==
'
__main__
'
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment