Skip to content
Snippets Groups Projects
Commit d1e6fbb5 authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

fix

parent a9a88a14
No related branches found
No related tags found
No related merge requests found
......@@ -719,6 +719,8 @@ class Class1NeuralNetwork(object):
]),
}
adjusted_inequalities_with_random_negatives = None
assert numpy.isnan(y_dict_with_random_negatives['output']).sum() == 0, (
y_dict_with_random_negatives)
if sample_weights is not None:
sample_weights_with_random_negatives = numpy.concatenate([
numpy.ones(int(num_random_negative.sum())),
......
......@@ -82,11 +82,11 @@ class MSEWithInequalities(Loss):
def encode_y(y, inequalities=None):
y = array(y, dtype="float32")
if isnan(y).any():
raise ValueError("y contains NaN: %s" % str(y))
raise ValueError("y contains NaN", y)
if (y > 1.0).any():
raise ValueError("y contains values > 1.0")
raise ValueError("y contains values > 1.0", y)
if (y < 0.0).any():
raise ValueError("y contains values < 0.0")
raise ValueError("y contains values < 0.0", y)
if inequalities is None:
encoded = y
......@@ -141,11 +141,11 @@ class MSEWithInequalitiesAndMultipleOutputs(Loss):
def encode_y(y, inequalities=None, output_indices=None):
y = array(y, dtype="float32")
if isnan(y).any():
raise ValueError("y contains NaN: %s" % str(y))
raise ValueError("y contains NaN", y)
if (y > 1.0).any():
raise ValueError("y contains values > 1.0")
raise ValueError("y contains values > 1.0", y)
if (y < 0.0).any():
raise ValueError("y contains values < 0.0")
raise ValueError("y contains values < 0.0", y)
encoded = MSEWithInequalities.encode_y(
y, inequalities=inequalities)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment