Skip to content
Snippets Groups Projects
Commit c76bcabc authored by Tim O'Donnell's avatar Tim O'Donnell
Browse files

better docs

parent 97322cb7
No related branches found
No related tags found
No related merge requests found
......@@ -9,6 +9,11 @@ from .common import amino_acid_distribution, random_peptides
class RandomNegativePeptides(object):
"""
Generate random negative (peptide, allele) pairs. These are used during
model training, where they are resampled at each epoch.
"""
hyperparameter_defaults = HyperparameterDefaults(
random_negative_rate=0.0,
random_negative_constant=25,
......@@ -17,7 +22,30 @@ class RandomNegativePeptides(object):
random_negative_method="recommended",
random_negative_binder_threshold=None,
random_negative_lengths=[8,9,10,11,12,13,14,15])
"""
Hyperperameters for random negative peptides.
Number of random negatives will be:
random_negative_rate * (num measurements) + random_negative_constant
where the exact meaning of (num measurements) depends on the particular
random_negative_method in use.
If random_negative_match_distribution is True, then the amino acid
frequencies of the training data peptides are used to generate the
random peptides.
Valid values for random_negative_method are:
"by_length": used for allele-specific prediction. See description in
`RandomNegativePeptides.plan_by_length` method.
"by_allele": used for pan-allele prediction. See
`RandomNegativePeptides.plan_by_allele` method.
"by_allele_equalize_nonbinders": used for pan-allele prediction. See
`RandomNegativePeptides.plan_by_allele_equalize_nonbinders` method.
"recommended": the default. Use by_length if the predictor is allele-
specific and by_allele if it's pan-allele.
"""
def __init__(self, **hyperparameters):
self.hyperparameters = self.hyperparameter_defaults.with_defaults(
......@@ -26,6 +54,22 @@ class RandomNegativePeptides(object):
self.aa_distribution = None
def plan(self, peptides, affinities, alleles=None, inequalities=None):
"""
Calculate the number of random negatives for each allele and peptide
length. Call this once after instantiating the object.
Parameters
----------
peptides : list of string
affinities : list of float
alleles : list of string, optional
inequalities : list of string (">", "<", or "="), optional
Returns
-------
pandas.DataFrame indicating number of random negatives for each length
and allele.
"""
peptides = pandas.Series(peptides, copy=False)
peptide_lengths = peptides.str.len()
......@@ -83,11 +127,15 @@ class RandomNegativePeptides(object):
def plan_by_length(self, df_all, df_binders=None, df_nonbinders=None):
"""
Generate a random negative plan using the "by_length" policy.
Parameters are as in the `plan` method. No return value.
Used for allele-specific predictors. Does not work well for pan-allele.
Different numbers of random negatives per length. Alleles are sampled
proportionally to the number of times they are used in the training
data.
Used for allele-specific predictors. Does not work well for pan-allele.
"""
assert list(df_all.allele.unique()) == [""], (
"by_length only recommended for allele specific prediction")
......@@ -110,6 +158,10 @@ class RandomNegativePeptides(object):
def plan_by_allele(self, df_all, df_binders=None, df_nonbinders=None):
"""
Generate a random negative plan using the "by_allele" policy.
Parameters are as in the `plan` method. No return value.
For each allele, a particular number of random negatives are used
for all lengths. Across alleles, the number of random negatives
varies; within an allele, the number of random negatives for each
......@@ -138,6 +190,19 @@ class RandomNegativePeptides(object):
def plan_by_allele_equalize_nonbinders(
self, df_all, df_binders, df_nonbinders):
"""
Generate a random negative plan using the "by_allele" policy.
Parameters are as in the `plan` method. No return value.
Requires that the random_negative_binder_threshold hyperparameter is set.
In a first step, the number of random negatives selected by the
"by_allele" method are added (see `plan_by_allele`). Then, the total
number of non-binders are calculated for each allele and length. This
total includes non-binder measurements in the training data plus the
random negative peptides added in the first step. In a second step,
additional random negative peptides are added so that for each allele,
all peptide lengths have the same total number of non-binders.
"""
assert df_binders is not None
assert df_nonbinders is not None
......@@ -163,6 +228,15 @@ class RandomNegativePeptides(object):
self.plan_df = new_plan.astype(int)
def get_alleles(self):
"""
Get the list of alleles corresponding to each random negative peptide
as returned by `get_peptides`. This does NOT change and can be safely
called once and reused.
Returns
-------
list of string
"""
assert self.plan_df is not None, "Call plan() first"
alleles = []
for allele, row in self.plan_df.iterrows():
......@@ -171,6 +245,15 @@ class RandomNegativePeptides(object):
return alleles
def get_peptides(self):
"""
Get the list of random negative peptides. This will be different each
time the method is called.
Returns
-------
list of string
"""
assert self.plan_df is not None, "Call plan() first"
peptides = []
for allele, row in self.plan_df.iterrows():
......@@ -184,4 +267,11 @@ class RandomNegativePeptides(object):
return peptides
def get_total_count(self):
"""
Total number of planned random negative peptides.
Returns
-------
int
"""
return self.plan_df.sum().sum()
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment